特集／営業マンが体験した難問・珍問集 2nd
【特集／営業マンが体験した難問・珍問集 2nd】

I. はじめに………………………………… 稲神戸製鋼所 小椋 大輔 2

II. 営業の現場からでた難問・珍問の専門家による回答

1. 材料の特性について
 （1）化学成分の働き 三菱製鋼㈱ 柴野 芳郎 3
 （2）硬さのもつ意味は？ 日本冶金工業 吉田 経樹 6
 （3）鋼はどのくらい強いの？焼入れ性との関係は？
 愛知製鋼㈱ 康二 8
 （4）介在物欠陥とJIS測定法の海外での知名度は何？
 山陽特殊製鋼㈱ 射場 俊彰 11
 （5）いろいろな記号があり、わかりにくい
 日新製鋼㈱ 内藤 靖 13
 （6）紛れもしい鋼種の使い方は？ 本田 正寿
 大同特殊製鋼㈱ 森川 秀人 16
 （7）ステンレスもさぴるの？磁石に付くステンレス？
 日本金属工業㈱ 加藤 方隆 21

2. 特殊鋼の製造に関連して
 （1）実務で最初に出てきますが、
 違いがよくわかりません？
 新日本製鐵㈱ 金須 貴之 24
 （2）電気炉鋼と高炉（転炉）鋼
 新日本製鐵㈱ 金須 貴之 26
 （3）ミルシートの内容は？ ㈱神戸製鋼所 安木 真一 27
 （4）加工、熱処理工程 日本高周波鋼業㈱ 殿村 俊志 29

III. 特殊鋼のグローバル化…………………… 住友金属工業㈱ 鎌田 芳彦 31

IV. 営業マン“いままさら聞けない”質問集…………… 35

山陽特殊製鋼㈱／日立金属㈱／中川特殊製鋼㈱／㈱神戸製鋼所
新日本製鐵㈱／大同特殊製鋼㈱／愛知製鋼㈱

あらゆる素材を次世代に向けて

ISO9001（全事業所）
ISO14001（特殊鋼部門）

株式会社平井
http://www.kk-hirai.co.jp/
特集／「営業マンが体験した難問・珍問集 2nd」

役名	氏名	会社名	役職名
小委員長	久松 定興	中川特殊鋼	常務執行役員
委員	小椋 大輔	神戸製鋼所	鉄鋼事業部 線材条鋼品技術部 課長
金崎 貴之	新日本製鐵	構想事業部 構想営業部 構想商品技術Gr マネジャー	
鎌田 芳彦	住友金属工業	構想・線材カンパニー 専任部長	
加藤 方隆	日本金属工業	研究開発本部 研究部 参事	
櫻村 剛志	日本高周波鋼業	富山製造所 商品開発部 担当課長	
佐藤 昌男	日本冶金工業	ソリューション営業部 部長	
柴野 芳郎	三菱製鋼	技術管理部	
植田 祐司	三興鋼材	取締役 営業本部長	
金原 茂	滝川内ガーネット	技術部長	
中川有一郎	中川特殊鋼	上級執行役員営業部長	

いかに より お役に立つか

株式会社 プルータス

本社 〒101-0032 東京都千代田区岩本町3-11-11
☎ 03-3861-0101 FAX 03-3863-6153

東京営業所 ☎ 03-3766-6301 FAX 03-3762-8130

新潟プラックステ <<TEC TRADE MARK>>

法人用・精密機器用
特殊鋼二次製品
「担 板 漢」

古賀 康友

禅の言葉に「担板漢」（たんばんかん）というのはあるようです。字の如く、板を担いだ男（漢）という意味ですが、肩に板を立てかけて担いている姿を想像して下さい。右肩に担げば右の方を見ることができず、左に荷物を移しても同じ事で、時折は荷物を降ろさないと回りが見えませんよ、という教えのようなです。板を担ぐこと自体は必要にせまられた行為なのでしょうが、板が大きければ大きいほど担ぐのに苦労も工夫もいるわけで、降ろすなんてこともない、願なによって担ぎ続けるうちに回りが見えなくなっって調和を失うという、険やなかな失敗を教える面白い言葉であるなあと、ある本の中で見つけた時に妙にスカトンと腑に落ちました。

10年ほど前に今住まいに移りましたが、すぐに並びにゴルフの打ち放しがあります。住宅地に在るこの小さな練習場は70ヤードでネットですが、打つほど値段が下がらぬらしい時間料金制であり、引越しを機にへはゴルフを立て直そうと、トラック一合分の球を打って何ほどという根性話の実践とばかり、週に一回、4、500発打ち事の目標をしました。素人が訓練や技術の上手に4、500発、しかも週一回という変則習慣は当然無理があったのでしょうか、練習後の全身の筋肉痛に加え、肘回りの筋が慢性的につひもむようになり、近所の整体師にはアホな事は止めよと諌されたのですが、逆にここが正念場と痛む肘をさらにかかららも続けていたところ、2年も経過すると練習後の筋肉痛は覚えなくなり、肘の痛みも和らぎ、おまけに指にはタコが。鍛鍊の果てに身体が進化した、ついに常人の域を越えたと得意になりましたがそんな単純な話で終わる訳もなく、練習場でのショットをコースで如何に再現できるかという、ゴルフがゴルフたる所以の難題に全く気付いていなかったのです。何も考えずに大量に打つ事を身体に刷り込むことができ、いざ本番の入来込みによる力みや固さで身体が常のように動かずミスショットを連発、さながら別の人格との戦いに終始する憤怒のラウンドを繰り返すことになってしまったのです。その克服に向け更に気合を入れて練習場に通うと、まさに「担板漢」ならぬ担棒漢で、右肩にゴルフクラブ20本くらいを担ぎ上げる事で溜歴を下げ、ゴルフの何たるかを完全に見損ねていたといおうね。

下手なゴルフの言い訳に禅の言葉を引合いに出すなど不適な極みとお叱りを受けるかも知れませんが、この「担板漢」という言葉、日頃の生活や仕事のたくさんの場面、或いは世間を見てもそこかしこに事例を見つける事の出来る教えであるように思えます。永年担ぎ続けるうちに半ば身体と同化してしまった「板」を見つけ、時にはそれを肩から引き剥がして足元に降ろし、広く世間を見渡し、自分の有力な事を誇る謙虚な気持ちを持たねばならない、そういう年回になったのではないかと思う此の頃です。

さて、以上の大抵を経た小生のゴルフはその後一体どのようなになっているのでしょうか。気になる方は是非ラウンドをご一読下さい。未だ憤怒の繰り返しも。
特集
営業マンが体験した
難問・珍問集
2nd

I. はじめに

最近、若手営業マンと会話をしていて驚いたことがありました。「お客様からS45Cの結晶粒度Gcの規格追加を依頼されました」と言うので、「中炭素鋼で浸炭するなんて珍しいね」と問うと、「いや、浸炭なんかしていませんけど…」と答え、ボカンとした様子でした。日常的に見聞きして鉄鋼用語を使っているけれども、本質的な意味を理解していないのかもしれないと思い、何とも言えない不安を感じたものです。

昔話で「災い転じてお客様に喜ばれた」面白いエピソードがあるので紹介したいと思います。商社経由でドイツの間屋からSAE1010線材の大口オーダーを受注したのですが、担当営業マンはリムド鋼かキルド鋼かの確認もせずに「軟鋼線材なのでリムド鋼だろう」と勝手に判断してオーダーを投入、製品を出荷したところ、お客様から「ミルシートのSi値が低すぎる。何かの間違いではないのか？」という問い合わせがあり、キルド鋼の仕様であったことが判明したのです。平身低頭お願いして何とか材料は使って頂けることになりましたが、その後もしきい展開になりました。「今回の材料は柔らかくて使いやすかった。また発注したいが、どのようにお願いすればこの材料を入手できるのか教えて欲しい」との連絡があり、しょげかえっていた営業担当者がまるで自分の手柄のように喜んだようですね。これではたまたま上手くいっただけで、一歩間違えば大問題を引き起こすところでした。

製造業の多くは団塊世代の大量退職に備え、もののづくり技能の継承や若手技術者の育成に取り組んできましたが、若手営業マンに対する技術的な教育に関する議論は余り見かけたことがありません。営業マンが技術屋を相手に丁寧発表と議論する必要は無いと思いますが、製品仕様の伝達などお客様と工場をつなぐ重要な役割を果たす訳ですから、最低限身についておくべき技術があると思います。各企業で工夫されていると思いますが、若手営業マンへの体系的な技術教育について再考する余地があるように思っています。

今月号の特集「営業マンが体験した難問・珍問集2nd」は、2003年5月に続く第2回目の企画です。前号同様に、特殊鋼営業の最前線で活躍されている皆さんから幅広く疑問や質問を集め、特殊鋼の専門家の方々に易しく解説していただきました。若手に限らずベテランの方々でも、「今さら聞けなかったけど、なるほどそうだったのか」といった新たな発見があるかもしれません。特殊鋼は品種も多くて取っ付きにくいと言うご意見も良く伺いますが、それこそが特殊鋼の醍醐味であり奥深さもあると思います。今回の特集を是非ご覧いただいて、今後の販売活動に役立てていただくとともに、新人教育の在り方を議論するきっかけとなれば幸いです。
Ⅱ．営業の現場からでた難問・珍問の専門家による回答

１．材料の特性について
（1）化学成分の働き

【質 問】

1. 鉄鋼製品のJIS化学成分を見るとC（炭素）やSi（珪素）、Mn（マンガン）量を全部読むわけでも1％ぐらいにしかなりません。残りの99％は何ですか？
2. 炭素が硬さを増すといわれます。炭素鋼はS58Cまでしかなく、その上は、工具鋼のSK65になるのは、どうしてですか？工具以外の部品で使えないのですか？
3. 不純物の量は用途により規格で異なりますか？
4. レアアースとは、なんですか？
5. 純ニッケルって、なんで99％なの？100％じゃないの？100％ってできないの？
6. パナジウムの入った特殊鋼あるのでびっくりしました。ミネラルウォーターの効用と、どう違うのでしょうか？

三菱製鋼㈱
技術管理部
柴野芳郎

鉄鋼材料は主に鉄鉱石（酸化鉄）をコークス（炭素）で還元することにより造られるため、主成分である鉄（Fe）の他に、製鉄時に混入する炭素（C）や元々鉄鉱石に入っているシリコン（Si）、マンガン（Mn）、りん（P）および硫黄（S）が必ず含まれます。これらの元素を鋼の5元素といいます。Cは鉄鋼材料にとって強さや硬さに最も影響を与える重要な元素で、炭素含有量を基準に表1の様に分類されます。Siは鋼の強さや硬さを増すと共に、精錬時の化学成分調整において、有害な非金属介在物の発生原因となる酸素を除去する役割があります。Mnは焼入れ性や靭性を向上させる有益な元素です。しかし、一般的にPやSは鋼を脆くさせる有害な元素であり、出来る限り少ないほうが良いのです。

JISハンドブック等で鉄鋼材料の化学成分を表示する場合には、Fe以外の成分を質量％で表示するようになっています。

特殊鋼が属する鋼は、含まれる化学成分から、炭素鋼と合金鋼に分類されます。

炭素鋼は、先述した鋼の5元素からなり、JISではC量が0.6％以下を機械構造用炭素鋼（S□□C材）、0.6～1.5％を炭素工具鋼（SK□□□材）としています。□は鋼に含まれる炭素含有量を表します。

機械構造用炭素鋼（SC材）は、塑性加工、切削等の機械加工や熱処理を施し、一般機械や輸送機械など各種機械構造部品に使用されます。鋼を焼入れるとFeの結晶の中にCの原子が押し込まれることにより、マルテンサイトと呼ばれる非常に硬い組織が得られます。焼入れで得られる鋼の最高硬度は図1に示すようにC量に依存し、C量0.6％まではC量の増加にしたがい硬度が増し、0.6％以上ではほとんど変化しません。SC材は、硬さの変化する領域の材料であり、材料の選定に際しては使用する部品に必要な硬さや靭性を考慮する必要があります。

表1 鉄鋼材料の分類

<table>
<thead>
<tr>
<th>分類</th>
<th>炭素含有量%</th>
</tr>
</thead>
<tbody>
<tr>
<td>純鉄</td>
<td>約0.02以下</td>
</tr>
<tr>
<td>鋼</td>
<td>約0.02～約2.1</td>
</tr>
<tr>
<td>鋼鉄</td>
<td>約2.1以上</td>
</tr>
</tbody>
</table>

2012年3月
図 1 鋼の炭素量と焼入れ最高硬度の関係

炭素工具鋼（SK材）は、主に耐摩耗性が必要な工具や治具に使用されます。C量が0.6％を超え増加すると、焼入れ後に残留する硬い炭化物（セメントライト）が生成され摩耗しにくくなり、かんな、鋳、ヤスリや金型などの工具、測定や搬送用などの治具の材料となります。また、治工具以外には熱処理条件を調整し、板ばね、皿ばねやせんまいなどに使用されています。その他の治工具以外の一般部品でも使用できますが、炭素化が多くなると加工性や靭性が悪化するため、必要がない限りSC材を使用する方が好ましいです。

合金鋼は、鋼に特別な性質を与える目的で、炭素鋼に1種類又2種類以上の元素を、ある一定以上添加した材料です。代表的な添加元素は、ニッケル（Ni）、クロム（Cr）、モリブデン（Mo）、チタン（Ti）、バナジウム（V）、ボロン（B）、ニオブ（Nb）です。また、鋼の特性を向上させる目的でMn、Si、S、Pを炭素鋼の規格以上に添加した材料も合金鋼に属します。

鉄鋼材料における不純物とは、鉄以外の全ての元素になりますが、一般的には鋼の性能に有害な影響を及ぼす元素（SとPなど）を指します。これらの成分値は、JISで上限値として規定されていますが、JIS制定以降の廃炉精錬や脱ガス技術の進歩により、不純物の減少や鉄の範囲で成分が捉えるようになっています。よって、使用環境や用途に応じた高品位な材料を得るため、材料メーカーとエンドユーザーが特別な成分規格を用途毎に設ける場合があります。

合金鋼に添加される元素のほとんどは、レアメタルと呼ばれますが、大地の一部、レアメタルを「地理上の存在が稀であるか、技術的・経済的理由で抽出困難な金属のうち、現在工業用需要があり、今後も需要があるものと、今後の技術革新に伴い新たな工業用需要が予測されるもの」と定義

<table>
<thead>
<tr>
<th>周期</th>
<th>I</th>
<th>A</th>
<th>IIA</th>
<th>IIB</th>
<th>IIIA</th>
<th>IVA</th>
<th>VA</th>
<th>VIA</th>
<th>VIIA</th>
<th>VII B</th>
<th>類</th>
<th>不活性ガス族</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Li</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Ar</td>
<td>K</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Na</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
</tr>
<tr>
<td>5</td>
<td>Rb</td>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
</tr>
<tr>
<td>6</td>
<td>Cs</td>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Ce</td>
<td>Pr</td>
<td>Nd</td>
<td>Sm</td>
<td>Eu</td>
<td>Gd</td>
<td>Tb</td>
<td>Dy</td>
</tr>
<tr>
<td>7</td>
<td>Fr</td>
<td>Fr</td>
<td>Ra</td>
<td>Ac</td>
<td>Th</td>
<td>Pa</td>
<td>U</td>
<td>Pu</td>
<td>Am</td>
<td>Cm</td>
<td>Bk</td>
<td>Cf</td>
</tr>
</tbody>
</table>

表 2 元素周期表（レアメタル・レアアース）
表 3 工業用純ニッケルのNi、Cの含有量（JIS H 4551～4554）

<table>
<thead>
<tr>
<th>合金番号</th>
<th>合金記号</th>
<th>Ni%</th>
<th>C%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW2200</td>
<td>N99.0</td>
<td>99.0</td>
<td>0.15以下</td>
</tr>
<tr>
<td>NW2201</td>
<td>N99.0-LC</td>
<td>99.0</td>
<td>0.02以下</td>
</tr>
</tbody>
</table>

表 4 ニッケル地金のNi含有量（JIS H 2104）

<table>
<thead>
<tr>
<th>種類</th>
<th>記号</th>
<th>Ni%</th>
</tr>
</thead>
<tbody>
<tr>
<td>特殊</td>
<td>N0</td>
<td>99.98以上</td>
</tr>
<tr>
<td>1 種</td>
<td>N1</td>
<td>99.80以上</td>
</tr>
<tr>
<td>2 種</td>
<td>N2</td>
<td>98.00以上</td>
</tr>
</tbody>
</table>

純度の高いニッケルは、JISではニッケル地金（表4）に分類されます。1種や特種のニッケル地金は、電極材料等に使用されます。

現在、日本では一社のみが電気ニッケル精錬を行っており、電解法（電気分解）で99.99％以上の高純度のニッケルを生産しています。

鉄鋼材料におけるバナジウム（V）の効果ですが、Vは鋼の中で炭素や窒素と結合し硬い炭窒化物となり、耐摩耗性の向上や結晶粒の微細化による靭性の改善に役立ちます。

一方、ミネラルウォーターの中でバナジウムはイオンとして存在し、人体に吸収されると血糖値を下げる効用があるといわれていますが、現時点では医学的に証明されていないため、特定保険用食品（特保）の認可を得ておりません。
（2）硬さのもつ意味は？

【質問】
1. お客さんと硬さの件で話をしていましたら、4.0とか3.5とかの数字と言われ、どうも小さい数値が硬いような感じでしたか、そんなことはあるのでしょうか?

【質問】
2. カタログ、ミルシート等の鋼材スペック表示で、硬さ単位が、プリネル（HB）、ロックウェル（HRC）、ビッカース（HV）等まちまちのは、何故ですか？

日本冶金工業技術研究部 吉田統樹

まず、理解しておく必要があることは、硬さは絶対的な値ではなく、材料の物理的性質、試験方法等によって異なるということです。

「硬さ」とは概念的に物の強度を示すものですので、長さ、時間等の物理量ではなく他の機械的性質と同様に硬さ量または比較値です。数種の測定方法があり、それぞれ測定原理が異なるため正確な定義は困難ですが、現在では「ある物体の硬さは、それが他の物体によって変形を与えようとするときに示す抵抗の大きさを示す尺度である」という定義が妥当とされています。通常「硬さ」を示す値は各測定方法によって定められた計算式から得られたものです。

例えば、プリネル硬度HBやビッカース硬度HVの場合は、ある材料に鋼球またはダイヤモンド圧子を押し込み、そのときの荷重をくぼみ表面積で割った値となります。そのため、HB、HVといったり硬さ値は被試験材が硬いほど大きい数値を示します。

小さい数値ほど硬いというのはプリネルのくぼみマークを指していると考えられます。

よく目にする「鋼のプリネル硬度に対する近似的換算値」の左端にプリネルくぼみが記載されています。この場合には、くぼみ径4.0でプリネル硬度は229、一方くぼみ径3.5でプリネル硬度は302となり、くぼみ径の小さい方が硬いということになります。

しかし、通常くぼみ径で話すことはありませんので、それから計算された硬さで議論することが重要です。硬さ試験試験値が小さい方が硬いことは一般にはありませんので注意願います。

日本冶金工業技術研究部 吉田統樹

もっとも質問です。前述のように硬さは工業量、比較値のため、先人が状況に応じていろいろな試験方法を検討して今日の状況になっています。

HB、HRC、HVはどれも共通して、一定の荷重をかけて圧子を被試験材に押し込む試験方法ですが、それぞれ特徴が異なり被試験材によって得手不得手があります。以下にその特徴を記載します。

1. HBは圧子に焼き入れ鋼球を用いて、被試験材に押し込んだ時の荷重を、くぼみの曲面積で割った値のことを言います。くぼみの大きさはHVに比べて大きく被試験材の材質によっては5〜7 mm程度のくぼみになりますので、広い範囲の平均的な数値が得られます。一方、焼き入れ鋼等の硬い材料では圧子の変形が生じるため、測定には適しません。

2. HRCは円錐型ダイヤモンド圧子を用いて、被試験材に押し込んだときのくぼみ深さから得られる値です。ここではHRの後に数字「C」はスケールを表します。スケールは硬さ測定に使用した圧子、試験荷重、測定可能範囲を示すものです。そのため、試料硬さの大きく異なるものを同一のスケールで評価することはできません。しかしこうの深さは比較的容易に測定できるため、試験に要する時間も短く、現場における中間工程での検査あるいは試作品の検査に使用されます。

3. HVは圧子に正四角錐形ダイヤモンド圧子を用いて、被試験材に押し込んだときの荷重を、圧子の接触面積で割った値のことを言います。測定原理はHBと共通していますが、くぼみの大きさは1 mm以下と小さく、小物試料や薄物試料あるいは微小部分の硬さ測定に適しています。また、
硬い材料から軟らかい材料まで単一の硬さ尺度で測定できます。一方、HBとは逆に広い範囲の平均的な数値測定には向きと言えます。

カタログ、ミルシートで硬さの単位がまちまちなのは、被試験材の性質や形状によって適した測定方法で行っているからです。

【質問】
3. 硬さで、引張の近似値を算出する、メカニズムとその理論は？

図2に示す通り、炭素鋼において、ある上限値までは引張強さσₚはHRCの約3.5倍という比例関係であることがわかります。

また、HVと引張強さに相関があり、次式の関係で表されることが知られています。

\[\sigma_p = \frac{1}{3} \times \text{HV} \]

この相関式は、炭素鋼、構造用合金鋼に対して成立します。しかしながら、オーステナイト鋼や高マンガン鋼等においてはそれほど相関性が高くはありません。

オーステナイト鋼の場合では引張強さではなく耐力とHVの間に相関性があるとも言われています。このように、材料によっては相関性が高くない場合や相関を示す式が異なる場合がありますので注意が必要です。換算に関しては、JISハンドブック鋼鉄Iにも掲載されている「硬さ換算表（SAE J 417）」を参照願います。

参考文献
1）日本材料試験技術協会：現場の硬さ試験（A）—基礎からその活用まで—, (2009), p.6-30
3）（社）特殊鋼協会：特殊鋼、第52巻第4号, (2003), p.6
（3）鋼はどのくらい強いの？
焼入性との関係は？

【質問】
1. 機械的性質に記載されている項目（降伏点・引張強さ・伸び・絞り）の意味を教えてください。
2. 最高強度の鉄は、φ0.2mmのワイヤー1本で、どの程度の重量を吊り上げることができるか？
 A）ネコ1匹（約5Kg）を吊り上げられる
 B）女性一人（約50Kg）を吊り上げられる
 C）馬一頭（500Kg）を吊り上げられる

図 1 引張試験における荷重・伸びの関係

◇ 鋼の強度について

鋼の強さには、その材料、部品に要求される特性としているいろいろな種類の強さ（強度）があります。代表的な強さとして、静的な機械的強度にあたる引張強度、曲げ強度、ねじり強度があります。二つ目には、繰り返しの力がかかった場合の強度として疲労強度が挙げられます。

この疲労強度も力のかかる方向により、引張－圧縮疲労強度、曲げ疲労強度、ねじり疲労強度などがあります。これらの強度の中で、静的な引張強度と曲げ疲労強度を代表として以下に詳述いたします。

【引張強度（強さ）】
図1に鉄鋼材料の引張試験結果の、荷重（応力）－伸び線図の例を示します。図中、降伏点は、荷重を増すと急に伸びが増す曲線点が現れる位置をいい、その荷重を試験片平部の原断面積で割った値（N/mm²）として表します。この降伏点は、その材料が塑性変形し始める最小の応力と思えることから出ます。

引張強さは、引張試験での最大荷重を試験片の原断面積で割った値（N/mm²）として求め、その材料が破断に耐えうる最大の応力を意味します。伸びは、試験片の破断後の標点間長さと標点距離の差の標点間距離に対する百分率で表し、絞りは、試験片の破断後の最小断面積とその原断面積の比率に対する百分率で表します。伸び、絞りとともに材料の変形能を表す特性として利用されます。

その詳細につきましては、JISZ2201、JISZ2241を参照下さい。

Q2の質問を考えてみます。鉄鋼材料で最も強度が高い材料は、スチールコードに使われている高炭素鋼線であり、その強度は4,070Mpa（415kgf/mm²）が実現されています1）。

0.2mmφワイヤー1本では、耐えられる重量は約13Kgになり、答えは、A）ネコ1匹（約5Kg）を吊り上げられるということになります。

参考文献
1）新日本製鉄編著（日本実業出版社）：鉄の未来が見える本、P96
【質問】
3. 耐疲労特性の上昇メカニズムを教えてください。
4. 小さな応力でも繰り返す事により金属疲労が起こり、最後は破断すると聞いていますが、その前に疲労の度合いが判る方法は、あるのでしょうか？また、回復するにはどのような手段が考えられるのでしょうか？

【疲労強度】
図2には、材料の曲げ疲労試験の結果として、破壊に至る応力振幅と繰り返し数の関係、S-N線図を示します。応力振幅σと繰り返し応力を加えることにより、静的強度（例：引張強さ）よりずっと小さい応力で破壊に至ります。そして、繰り返し応力をどれだけのサイクル（鉄鋼では107サイクルが目安）かけても疲労しない応力を、疲労限（疲労限度）と呼びます。

疲労は、応力の繰り返しにより、材料の表面、その近傍に微小なすべりの集中領域や非金属介在物を起点とした微小な亀裂が発生し、成長、進展により大きな亀裂となって、破壊に至るものです。耐疲労特性を上げるためには、微小な亀裂の発生と成長を抑える必要があり、その方策として、以下のことが挙げられます。

①材料の硬さ增加：疲労強度（曲げ）と引張強度、硬さとは、図3のよう関係があります。硬さと疲労強度はある強度範囲までは直線関係にあり、硬さを上げることにより疲労強度を上げることになります。そのためには、熱処理方法の改善、鋼種の選定と合わせて、浸炭処理、窒化処理、高周波焼入れなど表面の硬化処理が有効になります。

②表面の残留圧縮応力の付与：表面に繰り返しの引張応力がかかった表面に微小な亀裂が入るやすくなり、さらに成長しやすくなります。表面に圧縮の残留応力が付与されると、外部から付与される応力の大きさを打ち消して小さくすることができます。疲労亀裂の発生および進展を抑えることができます。ショットビニングは表面に大きな残留圧縮応力を付与する方法として、ギヤ、ばねな
どの部品の高強度化に活用されています。また浸炭、高周波焼入れなど表面硬化処理には、表面に残留圧縮応力を作り効果もあり、硬さ上昇と合わせて耐疲労特性を向上させます。

③表面状態の改善：表面粗さ、腐食ビットなど微小亀裂、応力集中源になりやすいため、その低減による疲労強度向上の効果があります。

④非金属介在物低減：応力レベルにより影響する非金属介在物の大きさの寄与は変わりますが、表面付近の大型介在物は疲労起点になりやすく低減が必要になります。

ところで、この疲労の進行度合いを破壊せずに測定する方法は、あるのでしょうか。これで、交直流磁気による透磁率変化を測定したり、超音波測定による研究例もありますが、汎用的に利用できる方法は見出されていないのが現状です。

また疲労の回復方法については、一旦、亀裂が発生したものの回復は困難ですが、亀裂のない疲労初期には、高温保持でのいわゆる回復処理が可能と考えられます。その場合、軟化による疲労強度の低下をもたらします。

【質問】

5. クレームで、「結晶粒が粗大化している。」焼入性は、結晶粒が良いのに？
6. 太いクランクシャフトが炭素鋼、細いボルトはクロムモリブデン鋼が使われていませんが、これで良いのでしょうか？

◇焼入性について

焼入れした鍛の特性は、鋼種（化学成分）だけではなく、鋼材、部品の質量により異なってきます。部品が大きくほど焼きが入りにくくなることか質効果といい、鋼種による焼きの入らないの違いを焼入性とといいます。一般に、太く大きな部品では、焼入性の高い合金鋼が使われ、質量の小な部品には、焼入れ性を考慮し、炭素鋼が使われ

表1 鍛の諸特性に及ぼすオーステナイト結晶粒径の関係

<table>
<thead>
<tr>
<th>性質</th>
<th>粗粒（No.5未満）</th>
<th>細粒（No.5以上）</th>
</tr>
</thead>
<tbody>
<tr>
<td>燃入性</td>
<td>大</td>
<td>小</td>
</tr>
<tr>
<td>同一焼入れでの強度</td>
<td>低</td>
<td>高</td>
</tr>
<tr>
<td>熱処理ひずみ</td>
<td>大</td>
<td>小</td>
</tr>
<tr>
<td>燃割れ</td>
<td>発生しやすい</td>
<td>滅多発生しない</td>
</tr>
<tr>
<td>硬さ</td>
<td>敏感</td>
<td>鈍感</td>
</tr>
<tr>
<td>残留応力</td>
<td>高</td>
<td>低</td>
</tr>
<tr>
<td>残留オーステナイト</td>
<td>多</td>
<td>少</td>
</tr>
<tr>
<td>燃れ強さ</td>
<td>低</td>
<td>良</td>
</tr>
<tr>
<td>被割性</td>
<td>良</td>
<td>劣</td>
</tr>
</tbody>
</table>

る場合が多くなります。その燃入れ性についてはジョミニー一端燃入れ法により測定されたジョミニー曲線で評価され、燃入れ性に影響を及ぼす因子として、化学成分（C、Mo、Cr、Ni、Mn、Bなど）と燃入温度（オーステナイト結晶粒径）が挙げられます。

表1に鍛の諸特性に及ぼすオーステナイト結晶粒径の影響を示します。ご質問にありますように、結晶粒が粗いほど燃入れ性については高くなり、強度的には良い方向ですが、靭性、熱処理ひずみが悪化するため、浸炭処理などを行う際には、厳重さが必要な場合が多くあります。

Q6について、燃入れ性の観点からだけ見ると、太いクランクシャフトには、燃入れ性の高い、クロムモリブデン鋼、細いボルトは炭素鋼のほうが適切なのは逆の使い方が考えられます。この理由は、それぞれの部品に要求される強度レベルとその他の要求特性が違うことです。ボルトでも、強度レベルの低い場合には、炭素鋼も使われますが、強度レベルの高いものは、強度と靭性を兼ね備えた鋼種、熱処理が必要である。代表的にクロムモリブデン鋼が使われます。一方、クランクシャフトでは、ボルトほど材料の靭性は必要としないこと、高周波焼入れ、窒化などの表面硬化処理により重要な部品のみ強化し、加工性も含めた経済性の高い部品設計がなされているため、主に炭素鋼が使用されています。
（4）介在物欠陥とJIS測定法の海外での知名度は？

【質問】
1. 非金属介在物とか地きずって、どんな欠陥ですか？

山陽特殊製鋼㈱ 研究・開発センター
開発企画管理グループ 射場 俊彰

非金属介在物は、鋼中に含まれるアルミナ、スピネル、カルシウムアルミネートなどの酸化物、マンガンカルサイトなどの硫化物、窒化チタンなどの窒化物の総称で、一般的には溶鉄の脱酸生成物または耐火物の破片が多く、小さいものは害はありませんが、凝集すると地きずなどの原因になったり、大きいものになると、疲労寿命の低下や加工時と割れの原因になるなど、機械的特性に悪影響を及ぼすことが知られています。

参考までに、鉄鋼用語（試験）（JIS G 0202）において、非金属介在物、地きずは以下のよう定義され、非金属介在物については、さらによA系介在物、B系介在物、C系介在物に分類されています。

非金属介在物：non-metallic inclusion
鋼の凝固過程において、鋼中に析出又は巻き込まれる非金属性の介在物。マクロ組織試験とミクロ組織試験で調べられるが、前者は介在物とは、肉眼で認められる非金属介在物をいう。

・A系介在物：A type inclusion
鋼中の非金属介在物のうち、加工によって粘性変形したもの（硫化物、けい酸塩など）。
必要な場合には、更に硫化物とけい酸塩とに分け、前者をA1系介在物、後者をA2系介在物という。

・B系介在物：B type inclusion
鋼中の非金属介在物のうち、加工方向に集団をなして不連続的に粒状に並んだもの（アルミナなど）。
Nb、Ti、Zr（単独又は2種以上）を含む鋼において、必要な場合には、更にアルミナなどの酸化物系とNb、Ti、Zrの炭化物系とに分け、前者をB1系介在物、後者をB2系介在物という。

C系介在物：C type inclusion
鋼中の非金属介在物のうち、粘性変形をしないで不規則に分散するもの（粒状酸化物など）。
Nb、Ti、Zr（単独又は2種以上）を含む鋼において、必要な場合には、更に酸化物系とNb、Ti、Zrの炭化物系とに分け、前者をC1系介在物、後者をC2系介在物という。

地きず：macro-streak-flaw
鋼の仕上面において、そのまま肉眼によって認められるビンホール、ブローホールなどによる線状のきず、非金属介在物による線状のきず、砂などの異物の介在による線状のきずなどの総称であり、明らかに加工きず又は割れと認められるきずは含まれない。

【質問】
2. 非金属介在物を低減する方法を教えて下さい。

3. お客様は介在物など鋼中に存在しないと思っている。何かクレームがあり、皆無にすることは出来ないと」と、お宅の技術力はそんなものか！」「と云われました。

山陽特殊製鋼㈱ 研究・開発センター
開発企画管理グループ 射場 俊彰

鋼中に存在する非金属介在物は、数十μm程度のサイズであっても、疲労寿命の低下や加工時の割れ発生の原因になるなど、機械的特性に悪影響を及ぼすことが知られている。また、サイズを小さく、かつ総量を低減させる必要があります。電気炉プロセスを例にとって、低減させる方法として、以下の3点を紹介します（プロセス例：電気炉→取錬精錬→RH脱ガス→連続鍛造 図1参照）。

1. 1点目は、取錬精錬工程、通称LFでの低減です。この工程では、塩基性スラグにより還元精錬が行われますが、これにより脱硫と酸化物系介在物の低減が行なわれます。ガス揺らや適切な温度管
図 1 電気炉プロセス例

理などにより、スラグと溶鋼の反応を効率よく行なうことで、非金属介在物の低減が図れます。
2 点目は、RH 脱ガス工法での低減です。この工程では、取鍋のスラグを突き抜け溶鋼中にまで浸漬管を挿入し、真空脱ガス槽へ溶鋼を還流させて、酸素、窒素、水素などのガス成分の除去が行なわれます。スラグと溶鋼が混ざらない状態で処理を行いないうち、非金属介在物の低減が図れます。
3 点目は、連続鉱造工法、通称 CC での低減です。この工程では、取鍋からタンディッシュと呼ばれる中間容器に溶鋼を注入した後、水冷モールド内に溶鋼を注ぎ、表面が凝固した鉄片を下方に引きながら連続的に鉄造が行なわれます。鉄造中に非金属介在物が浮上することで低減が図れます。連続鉱造機には、垂直型、湾曲型などがあります（図 2 参照）。この中で垂直型は、鉄造中に浮上する非金属介在物の集積や、曲げによる鉄材内部や表面の欠陥を回避できるという特徴があるので、高品質鋼材の製造に適しています。しかし、一方で湾曲型に比べて初期投資が大きくなるといったデメリットもあります。

上記以外にも高鉄鋼メーカーでは、機械の特性に大影響を及ぼし、クレームの要因になりうる非金属介在物を、更に低減させるため、さまざまな検討がなされています。

【質 問】
4. 介在物の JIS の測定法で海外メーカーにお願いすると、なかなかうまくいきません。海外規格表示の換算方法は？

山陽鋼材製鋼所 研究・開発センター
開発企画管理グループ 射場 俊彰

JIS G 0555 に定められている鋼の非金属介在物の顕微鏡試験方法は、ISO4697 をもとに作成されており、対応国際規格には規定されていない規定項目を日本工業規格として追加されています。JIS と対応する国際規格との対比については、附属書 2（参考）に記載されていますので、そちらを参照ください。附属書 1（規定）に記載されている点算法による非金属介在物の顕微鏡試験方法については、測定方法そのものが全く異なりますので、海外規格との換算方法はないと思われます。
（5）いろいろな記号があり、わかりにくい

【質問】
1. SCMのCはクロム、Mはモリブデンだが、SCのCはなぜクロムじゃないか？

内藤靖

機械構造用炭素鋼はかなり以前（1950年以前）から含有物のC（炭素）の100倍の数字をステーチールを意味するSの後にし、S50C（C: 0.47 ～ 0.53%）のような記号になっており、数字の後に炭素鋼の意味のCをつけてあります。
Sの後に数字の前、Cr、M、Nは合金元素を意味して、Cは他の合金元素と同時に出す場合は、SCMのようにSを省略します。

クロム（Cr）単独の場合は、S-Cr20のようなに省略しないで表示します。Mはモリブデン（Mo）ですがSを省略して表示します。

後からJIS化したマンガン鋼は、モリブデンとの区別をするためMnと表示しています。

なお、合金鋼も1979年に、炭素量を表示することにして、SCM430やSCM440のように二桁の数字のうち、下二桁を炭素量とするように変更しました。

頭の数字で4が多いのは、添加されている合金元素の量の一般的概念を示し、4が一番ポピュラーな合金量で、この数字が大きいのは、4より合金量が多く、小さいと合金量が少ないことを示しています。

従って、JISにはないがSC320のように、合金元素を少なくして、コストダウンを図ることやSCM720のように合金元素を増やして焼入れ性をあげるなど、独自の活用をされている例もあります。

【質問】
2. CHR、CHA、CHKって何が違うの？

内藤靖

-Rはリムド鋼、-Aはアルミキルド鋼、-Kはキルド鋼の意味です。

なお、リムド鋼、キルド鋼の違いは「Ⅱ-2-（1）-質問3」の項を参照してください。

【質問】
3. 熱処理業者に、SCM440Hの丸棒の焼入れをお願いしたところ、SRなる記号がありました。どのような処理の事なのでしょうか？

内藤靖

Stress Relief Annealingの意味で、溶接後の応力除去の熱処理の意味です。

【質問】
4. プラスチックは色が付くのに鉄には色が付かない。異材防止方法で、何か方法はないですか？

内藤靖

鉄の表面に着色する方法はありますが、鉄そのものに色をつけることは、話題にはなりますが挑戦した話は聞いたことはありません。

なお、鋼材の種類を判断する方法には次の様な方法があります。
主に鋼材の定性的判定と鋼種取り扱い、異種鋼材混入の恐れがある場合など、その選別に用います。

火花試験には、①グラインダー火花試験法、②粉末火花試験法、③ベレット試験法があります。
5. なぜSUSは成分と関係ない名前がつくのですか？

ステンレス鋼材の場合、SUSに続いて3桁の数字があります。
この数字は国際的に広く使用されているAISIで使われているタイプ3桁の数字から流用されています。
3桁の数字の最初の数字は以下の如く鋼種の大分類を表しています。
200番台：クロム・ニッケル・マンガン系
300番台：クロム・ニッケル系
400番台：クロム系
600番台：高温高強度合金系
下2桁の数値については、特に定められたルールはありませんが、通常304は18Cr－8Ni、430は18Crと覚えておく必要があります。
また数字の前にアルファベットがついているものがあります。代表的なものを次に示します。
L：低炭素（Low Carbon）の意味の一例
 304L、316L
J：日本独自鋼種の意味の一例
 316J1、329J1
XM：ASTM規格での特許鋼種の一例
 XM15J1、XM27
N：窒素添加の意味一例
 304N1、316N1
形状を示す必要がある場合は、鋼種記号の末尾に次の様々なアルファベットをつけて区分します。
B（Bar）：棒
HP（Hot Plate）：熱間圧延鋼板
CP（Cold Plate）：冷間圧延鋼板
HS（Hot Strip）：熱間圧延帯
CS（Cold Strip）：冷間圧延帯
などがあります。
例えば、SUS 304HPといえば、18Cr－8Niの熱間圧延鋼板の事を示します。

6. 丸棒の切断面に色のついたシールが貼ってあります。いろんな色のシールがあるようですが、意味を教えて下さい。

特殊鋼棒鋼について、異材混入等取り扱い上のミスを防止し、品質確保の目的で鋼材の種類を色と記号で識別するシールです。
対象は、日本工業規格（JIS）の内16種及び自動車規格（JASO）（表1）となっています。

表1 特殊鋼棒鋼の色別表示対象鋼材

JIS G 4051	機械構造用炭素鋼鋼材
JIS G 4052	焼入れ性を保証した構造用鋼鋼材（H鋼）
JIS G 4102	ニッケルクロム鋼鋼材
JIS G 4103	ニッケルクロムモリブデン鋼鋼材
JIS G 4104	ステンレス鋼鋼
JIS G 4105	クロムモリブデン鋼鋼材
JIS G 4106	機械構造用マンガン鋼鋼材及マンガンクロム鋼鋼材
JIS G 4202	アルミニウムクロムモリブデン鋼鋼材
JIS G 4303	ステンレス鋼棒
JIS G 4311	耐熱鋼棒
JIS G 4401	炭素工具鋼鋼材
JIS G 4403	高速工具鋼鋼材
JIS G 4404	合金工具鋼鋼材
JIS G 4801	ばね鋼鋼材
JIS G 4804	硫黄及び硫黄複合焼削鋼鋼材
JIS G 4805	高炭素クロム軸受鋼鋼材

2. 自動車規格

JASO M 106 自動車構造用鋼鋼材

炭素鋼は黄色のラベルでS45Cの場合は45の数字がクロームモリブデン鋼は緑色のラベルでSCM420の場合は420の数字が中央に表示されているなどですが、ここで全部を紹介できませんので、特殊鋼メーカーのハンドブックをご覧になることをお勧めします。
7. 同じ成分なのに、何故鋼種名が変わるか？
例えば、SCとSF鋼種名、規格が多様統一すれば？

SC材（G4051）とSF材（G3201）ですが、化学成分は同じです。
SF材は機械的性質を保証するために設けられた規格です。
SC材では特に機械的性質の保証はありません。

8. JIS規格は、会外国の規格に比べて、どのような特徴がありますか？

鋼材の規格そのものは、規格体系こそ異なるものの、諸外国（ASTMやEN等）と比較して同様な材質が規格化されています。
うち、帯鋼ではJIS G3311のみがき特殊帯鋼などは、特徴的なものといえます。また、試験方法などはJISの規格に整合させようという動きがあり、全世界的に統一する動きがあります。

先輩・後輩スレーチガイカンチガイ
先輩「急いでセンペッ（不良品選別）の用意しあら！？
後輩「（お顔別）幾らくらい包んでいきますか？」

先輩「マンクロー（Mn-Cr鋼）でいうかは？
後輩「（大分焼酎「万九郎」）いいですね！あれ堪らなく旨いんですよ」

2012年3月 15
（6）紛らわしい鋼種の使い方は？

【質問】
1. 軸受鋼で、SUJ2～SUJ5がJISに規格されています。しかし、市場で流通している大半は、SUJ2と思われます。SUJ2以外の鋼材の使い分けや用途は、どのようなものがありますか？

表1 高炭素クロム軸受鋼の化学成分（JIS G4805）

<table>
<thead>
<tr>
<th>鋼種</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUJ1</td>
<td>0.95～1.10</td>
<td>0.15～0.35</td>
<td>0.50以下</td>
<td>0.025以下</td>
<td>0.025以下</td>
<td>0.90～1.20</td>
<td>-</td>
</tr>
<tr>
<td>SUJ2</td>
<td>0.95～1.10</td>
<td>0.15～0.35</td>
<td>0.50以下</td>
<td>0.025以下</td>
<td>0.025以下</td>
<td>1.30～1.60</td>
<td>-</td>
</tr>
<tr>
<td>SUJ3</td>
<td>0.95～1.10</td>
<td>0.40～0.70</td>
<td>0.90～1.15</td>
<td>0.025以下</td>
<td>0.025以下</td>
<td>0.90～1.20</td>
<td>-</td>
</tr>
<tr>
<td>SUJ4</td>
<td>0.95～1.10</td>
<td>0.15～0.35</td>
<td>0.50以下</td>
<td>0.025以下</td>
<td>0.025以下</td>
<td>1.30～1.60</td>
<td>0.10～0.25</td>
</tr>
<tr>
<td>SUJ5</td>
<td>0.95～1.10</td>
<td>0.40～0.70</td>
<td>0.90～1.15</td>
<td>0.025以下</td>
<td>0.025以下</td>
<td>0.90～1.20</td>
<td>0.10～0.25</td>
</tr>
</tbody>
</table>

注：SUJ1は2008年のJIS改定で規格から外れました

JISで定められている高炭素クロム系軸受鋼の化学成分を表1に示します。SUJ1はCrが低く、焼入れ性が劣るため、小さ法のボールやローラーに使用されることもありますが、現在ではほとんど使用されずにSUJ2で代用されています。（2008年のJIS改訂でSUJ1は規格から外されました）SUJ2は優れた特性をもつ高炭素クロム系のなかでも90％以上使用されている代表鋼種であり、φ25mm以下のボールやローラーおよび厚さ25mm以下のレースのはほとんどに使用されています。SUJ3はSUJ2よりSiとMnを高め、Crを減らした焼入れ性のよい鋼種で、φ25mm以上のボールやローラーおよび肉厚のレースに用いられます。SUJ4はSUJ2とSUJ3の中間の焼入れ性をもつ鋼種なので、用途もSUJ2とSUJ3の中間寸法のベアリングに限られるため、使用量は比較的少ないです。SUJ5はSUJ3にMoを加えてさらに焼入れ性を向上させた鋼種であり、SUJ3では熟処理後の心部硬さが不足する大径のボールやローラーあるいは肉厚のレースに使用されます。ただ、大型の軸受には浸炭焼入れが使用される事が多く使用量は少ないようです。

このように高炭素クロム軸受鋼はSUJ2の化学成分をベースにベアリング形状に応じて必要とする焼入れ性を満たすように化学成分を調整していますが、焼入れ性の良い鋼は成分と焼入れ性のバランスをとるのが難しく、またMnの高いSUJ3やSUJ5は清浄度が悪くなりやすいので、清浄度の優れた鋼を得るには高度の製鍊技術が必要となります。

【質問】
2. 同じ鋼種、寸法、熟処理状態でも棒鋼の加工工程別（鍛造、切削、引抜）で、表面焼基準が異なる理由は何ですか？

参考文献
特殊鋼ガイド（初級） 特殊鋼倶楽部編
表２ 機械構造用鋼のきず深さの許容限度（JIS G 4051）

<table>
<thead>
<tr>
<th>工程</th>
<th>呼称寸法径（mm）</th>
<th>呼称寸法からのきず深さの許容限度</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般鍛造</td>
<td>全</td>
<td>呼称寸法の4%以下。ただし、最大値5.0mm</td>
</tr>
<tr>
<td></td>
<td>16未満</td>
<td>呼称寸法の4%以下。ただし、最大値0.5mm</td>
</tr>
<tr>
<td></td>
<td>16以上 50未満</td>
<td>呼称寸法の3%以下。ただし、最大値1.0mm</td>
</tr>
<tr>
<td></td>
<td>50以上 100未満</td>
<td>呼称寸法の2%以下。ただし、最大値1.5mm</td>
</tr>
<tr>
<td></td>
<td>100以上</td>
<td>呼称寸法の1.5%以下。ただし、最大値3.0mm</td>
</tr>
<tr>
<td>冷間引抜</td>
<td>16未満</td>
<td>0.15mm</td>
</tr>
<tr>
<td></td>
<td>16以上 50未満</td>
<td>呼称寸法の1%以下。ただし、最大値0.35mm</td>
</tr>
<tr>
<td></td>
<td>50以上 100未満</td>
<td>呼称寸法の0.7%以下。ただし、最大値0.50mm</td>
</tr>
<tr>
<td></td>
<td>100以上 130以下</td>
<td>呼称寸法の0.5%以下。</td>
</tr>
</tbody>
</table>

【質問】
3. 低膨張鋼のインバーやスーパーアンバーは、一般的によく聞きますが、最近ステンレスインバーなる材料があると聞きましたが、どのような物でしょうか？

インバー(Invar)という名称はInvariable Steel（変形しない鋼）から名付けられ、日本語では不変鋼と呼ばれています。1896年にスイス人物理学者のシャルル・エドワール・ギヨーム博士が、Fe-36Ni合金で常温付近の熱膨張率が小さくなることを発見し、Invarと命名したことに由来しています。ステンレスインバー材は、1938年に増本量（はかる）博士によって発見された材料で、耐食性に優れると同時にインバー材に比べて更に熱膨張率の小さな材料です。

増本博士はインバー現象が起こる原因をその合金が持つ磁気特性から説明し、この理論からFeNi-Co合金においてインバーよりもさらに小さい熱膨張係数を有する合金を発見しました。博士は、この合金をスーパーアンバー(Super-Invar：超不変鋼)と名付け、さらにその理論の延長線上からFe-Co-Cr系においても、スーパーアンバーと同様の膨張係数を有する合金を発見します。この合金が質問にある合金で、Cr添加により耐食性も優れていたことからステンレスインバー（Stainless-Invar：不銹不変鋼）と命名しています。表3に主なインバー材の組成と線膨張係数を示します。

2012年3月
表 3 主なインバー材の線膨張係数

<table>
<thead>
<tr>
<th>材料</th>
<th>組成（wt%）</th>
<th>線膨張係数（20℃）</th>
</tr>
</thead>
<tbody>
<tr>
<td>純鉄（比較材）</td>
<td>-</td>
<td>1.18 × 10⁻⁶</td>
</tr>
<tr>
<td>インバー</td>
<td>63.5Fe-36.5Ni</td>
<td>1.2 × 10⁻⁶</td>
</tr>
<tr>
<td>スーパーインバー</td>
<td>63.5Fe-31.5Ni-5.0Co</td>
<td>< 1.0 × 10⁻⁷</td>
</tr>
<tr>
<td>ステンレスインバー</td>
<td>36.5Fe-54.0Co-9.5Cr</td>
<td>< 1.0 × 10⁻⁷</td>
</tr>
</tbody>
</table>

しかし、近年ではステンレスインバーという呼称はほとんど聞かないと思います。実は、博士は膨張係数の特性性から弾性率の温度係数も類似の性質が起こることを予想し、1940年に37Fe-55Co-8Cr合金において弾性率の温度係数が負から正値になることを発見しました。これによって、ステンレスインバーの組成付近で温度係数がゼロとなることを示唆しました。このように温度による弾性率の変化が非常に小さい材料をエリンバー（Elinvar：恒弾性材料）と言うため、1944年に発見した合金をコエリーバ（Co-Elinvar）と名付けています。そのためステンレスインバーは、エリーバー材の1種として扱われています。この材料はエリーバー特性とすぐれた耐食性を備えているため、精密ばね材料として時計や精密測定器具などに使用されています。これら増本博士によって発見された材料は、当時世界最高品質と言われたスイス製時計を日本が凌駕する大きな要因となったそうです。

【質問】
4. 冷間ダイス鋼と、熱間ダイス鋼の違いは？
（用途・成分系等）

ダイス鋼には、冷間ダイス鋼と熱間ダイス鋼があります。冷間ダイス鋼は、冷間鍛造や冷間プレスなど被加工材を常温の状態で加工するものに主に使用されるのに対して、熱間ダイス鋼は、熱間鍛造や熱間押出し、ダイカストなど被加工材を高温の状態で加工するものに主に使用されます。

被加工材が常温の場合、成形には大きな力が必要となり金型も大きな応力を受けるため、金型には強度と耐摩耗性が求められます。そのため、高硬度が得られ、かつ耐摩耗性を向上させるため硬質の炭化物を分散させ、炭素（C）とクロム（Cr）を多く含んだ冷間ダイス鋼を使うことが有効です。代表的な冷間ダイス鋼として、SKD11（主成分：1.5% C - 12% Cr - 1% Mo - 0.3% V、使用硬度：58～62HRC程度）が一般的に用いられています。また、SKD11をベースに高温焼成し硬度と韌性を改善した8Cr鋼（主成分：1% C - 8% Cr - 2% Mo - 0.3% V）も広く用いられています。

一方、被加工材が高温の場合、軟化状態または溶融状態となり金型への応力は低下する半面、金
型自体の温度が上昇し、かつ熱衝撃が加わります。従って、冷間の場合とは異なり、金型には強度や耐摩耗性よりも韌性や高温下での強度が求められます。そのため、冷間ダイス鋼に比べてCとCrが少なく粗大な炭化物がほとんど無い、より高韌性な熱間ダイス鋼を用いることが一般的です。代表的な熱間ダイス鋼として、SKD61（主成分：0.4％C-5％Cr-1％Mo-1％V、使用硬さ：42-50HRC程度）が一般的に用いられています。また、SKD61をベースにMo量を増やして高温強度を高めたり、ESRなどの特殊溶接を行って品質安定性を高めた、高性能なSKD61改良鋼も用いられています。各材料の位置付けを図1に示します。

【質問】
5. インコネル718等の超耐熱鋼は、アルミ合金やマグネシウム合金の製造金型や銅抜ビンには、あまり使用されていないのは何故でしょうか？表面改質との組合わせでの使用は、可能なのでしょうか

素材もSKD61同等レベルの熱伝導性を有するものではなく、超耐熱鋼は一般的に金型材に適した材料とは言えません。また、銅抜きビンについても焼付き防止の観点から熱伝導性の優れた素材が必要であり、Inconel系の素材は適していません。表面改質技術の組み合わせで改善できる因子もありますが、素材自体の熱伝導率が低いため大きな改善効果は期待できないと考えられます。表面改質によるコスト増加を考慮すると超耐熱鋼を金型材料に使用するメリットは少ないといえます。

【質問】
6. INCONELの熱処理において、固溶化熱処理をして性能を発揮するものとする必要がある鋼種があると聞いたことがあります。この様な差は、何故おきるのですか？具体的な鋼種で説明頂ければ幸いです。

Inconel系の超耐熱鋼は主に強度特性を重視した鋼種系と耐酸化性・耐食性等を重視した鋼種系に大別することができます。

前者に代表される鋼種は主に強度特性の向上に寄与する強化相を析出させるものであり、ここでいう強化相は主にγ”（ガンマプライム）相およびγ”（ガンマダブルプライム）相のことです。これ
らの素材は、圧延や鍛造後の冷却中に生成した析出相をマトリックス中に固溶化熱処理によって再固溶させることで組織を再度均一にし、その後時効熱処理を実施することによって析出相を最適な析出量・サイズに時効析出させています。強度特性に優れた鋼種の代表としてはInconel706、Inconel718、InconelX750等があり、いずれもγ相の生成元素であるAl、Ti、γ"相の生成元素であるNbが含まれているのが特徴です。固溶化熱処理および時効熱処理を实施しないと適正な組織が得られず強度特性が低下するため、これらの熱処理が必要となります。

一方、後者のように強度特性を重視せず耐酸化性・耐食性等を重視した鋼種には上記のような強化相析出の熱処理を行わずに特性を発揮するものがあります。Inconel600やInconel601はマトリックス中に存在するNi、Crの効果によって耐酸化性や耐食性を高めた鋼種です。これらの鋼種は一部に炭化物が存在しますが、基本的にマトリックスの単相組織であり固溶化熱処理を実施しなくても各特性を発揮することが可能です。但し、一般的な鋼材同様に加工ひずみのような製造中に付与される因子によって製品状態の結晶粒サイズが変化するため、それに起因する機械的特性（引張特性、延性、韌性、クリープ特性等）が変化します。顧客から要求特性が提示されている場合、それらの特性を満足するために焼純処理によって結晶粒サイズを調整した素材を製作する必要があります。

焼純処理温度は固溶化熱処理温度よりも比較的低い温度域で実施され、炭化物のビン止め効果によって結晶粒サイズを制御し強度特性を最適化させることができます。

焼純処理を実施せず熱間加工ままや冷間加工ままで使用可能な場合もあるため、顧客の使用環境や要求特性を確認し、ニーズに適した材料を提案する必要があります。

先輩・後輩スレチガイカンチガイ
先輩「必ずティアダウン（tear down）見てこいよ」
後輩「誰かが泣く（tear）まで待ってるんですか？」
⇒正しい発音は「テアダウン」なのに…

先輩「アスマン（ASMn：自動車材料規格でのMn鋼）だろ」
後輩「（巨大大ダメ？）？？？…」
（7）ステンレスもさびるの？
磁石に付くステンレス？

【質問】
1. ステンレスボルトに磁石が付いたので、ステンレスではないのでは？
2. SUS鋼、フェライト系、マルテンサイト系、どちらもCr系です。コスト差は？
3. ステンレスの包丁を使用していますが、長く使用していると、切れにくくなると聞きました。
4. ステンレスで二相鋼の名前を良く聞くようになりました。クラッド鋼どう違うの？
5. ステンレスはさび難しい鋼となっていますが、公園や野外の手摺などが変色（さび？）しているのを見かけます。

説明させていただきます。

◇ ステンレス鋼の磁性

表1には磁性的有無も示しましたが、ステンレス鋼の金属組織はオーステナイト相、フェライト相、マルテンサイト相の3種に分類され、この中で磁性が無いのはオーステナイト相だけです。

そのため、磁石に付かないステンレス鋼といえば、オーステナイト系ステンレス鋼となります。しかし、"オーステナイト系ステンレス鋼は常に磁石に付かない"と言う訳ではありません。オーステナイト相は冷間加工が加えられると、その加工量に応じ、加工誘起マルテンサイトが生じ磁性を帯びる事があります。

この性質は合金元素（C, Si, Mn, Ni, Cr, 他）の含有量が少ないほど顕著になるため、表中のオーステナイト系ではSUS304が最もこの性質が大きくなります。そのため、ボルトのように冷間加工で強く硬化させれば磁性を帯びますし、単純な曲げ加工でも角に磁性を帯びたりします。また、このようにして生じた磁性は、固定化処理を施

表1 ステンレス鋼の概略成分と機械的性質（JIS G 4305 冷間圧延ステンレス鋼板及び鋼管）より引用

<table>
<thead>
<tr>
<th>分類</th>
<th>種類の記号</th>
<th>磁性</th>
<th>成分（％）</th>
<th>機械的性質</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>Ni</td>
</tr>
<tr>
<td>オーステナイト系</td>
<td>SUS304</td>
<td>無し</td>
<td>≤0.08</td>
<td>8.00 ~ 10.50</td>
</tr>
<tr>
<td></td>
<td>SUS304L</td>
<td>無し</td>
<td>≤0.030</td>
<td>9.00 ~ 13.00</td>
</tr>
<tr>
<td></td>
<td>SUS316</td>
<td>無し</td>
<td>≤0.08</td>
<td>10.00 ~ 14.00</td>
</tr>
<tr>
<td>オーステナイト・フェライト系</td>
<td>SUS329J4L</td>
<td>有り</td>
<td>≤0.030</td>
<td>5.50 ~ 7.50</td>
</tr>
<tr>
<td>フェライト系</td>
<td>SUS430</td>
<td>有り</td>
<td>≥0.12</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SUS445J2</td>
<td>有り</td>
<td>≤0.025</td>
<td>-</td>
</tr>
<tr>
<td>マルテンサイト系</td>
<td>SUS420J2</td>
<td>有り</td>
<td>0.26 ~ 0.40</td>
<td>12.00 ~ 14.00</td>
</tr>
</tbody>
</table>

*）焼きなまし状態（フェライト相+炭化物）

2012年3月
せば無くすることができます。
“磁石に付くか否か”だけでステンレス鋼が否
かを判断することはできません。

◇ ステンレス鋼の価格

ステンレス鋼はNi、Cr、Mo等のレアメタルが
多く添加されています。そのため、これらの量だ
けで価格が決まってしまうように思われがちです
が、なかなかそうも行きません。

これは、製造するためのプロセスが大きく影響
するためです。例えばC、Nを下げるのにコスト
が掛かることは理解しやすいのですが、その他に
熱間加工や熱処理等にそれなりの工程が掛かるもの
があります。

表中のマルテンサイト系（SUS420J2）やオース
テナイト・フェライト系（SUS329J4L）がその良
い例でしょう。マルテンサイト系は焼入れ時に硬
くする為、Cを多く含みます。このCを均質化し
丈夫で長持ちする刃物を作るためには、それに応
じた工程が必要となります。

また、オーステナイト・フェライト系は熱間加
工で鈍が発生しやすいため、やはり工程が掛かり
ます。

合金の含有量だけで価格が決まる訳ではありません。

◇ ステンレス鋼の包丁

ステンレス鋼の包丁ですが、代表格はSUS420J2
です。この鋼はマルテンサイト系のため、和包丁
と金属学的には同じ組織を持ちます。ちゃんと研
いでいれば切れにくいくなることはありません。和
包丁と比べ格段にさび難いため、研ぐチャンス（手
入れ）を逃しやすいのではないでしょうか？

◇ 二相系

二相系のステンレス鋼とは主にオーステナイ
ト・フェライト系のことを指します。

オーステナイト系は加工が容易（表1で伸びが
大きい）で溶接を行っても脆化し難い性質を持ち
ますが、塩化物があると応力腐食割れ（SCC）を
生じる欠点を有します。一方、フェライト系はこ
のSCC起こし難い性質を持ちますが、溶接時の
結晶粒粗大化等による脆化が生じやすいことは否
めません。

この両相がほぼ1:1の割合になるように、成
分や熱処理を工夫しているのが二相系で、“SCC
を生じさせになったらフェライト相が頑張る。脆
化が起きそうになったらオーステナイト相が助け
張る”という思想で設計されたステンレス鋼で
す。また、二相系特有の強度が高い特性も持ちま
す。

図1に二相系の断面組織写真を示しますが、白
く見えるのがオーステナイト相で黒く見えるのが
フェライト相になります。2種類以上の異なる金
属を合わせて接合したクラッド鋼とは全く異なり
ます。
◇ ステンレス鋼のさび

ステンレス鋼はさび難い鋼ですが、全くさびないわけではありません。
塩（塩化物）が付着するとさびやすくなります。海に近い場所での塩粒子の飛来や人体からの汗、食物中の塩分等、原因は様々です。工場現場近くの鉄粉や鉄さび粉等が原因（もらいさび）になることもあります。

しかし、ステンレス鋼は元来さび難い性質をもつため、公園の手摺などではさびが深く進行することはありません。実際、市販のさび取剤で拭いて貰えば大抵のさびは落ちてしまいます。また、海岸に近い場所でも、雨で塩分を定期的に洗い流す環境であれば、ステンレス鋼のさびは深くは進行しません。

例えば当社の衣浦製造所の海岸に面した衣浦臨界工業地帯に1971年（昭和46年）に建設されましたが、工場の屋根と側壁はステンレス鋼製です。当時は主にSUS316を使用していましたが、1996年（平成8年）に完成した熱延工場はNTK U-22（SUS445J2）やNTK U-24（SUS445J1）を使用しています。大々40年、15年が経過していますが、ステンレス鋼は今でもメンテナンスフリーで健在です。

しかし、隙間等、雨水が停滞しづらい場所では腐食の進行が遠くありません（隙間腐食）。軒下等ではこのような状況が生じやすいので、そういう部分でさびを見つけたら、早めに除去することをお勧めします。

むすび

本年で、誕生してからおよそ100年になるステンレス鋼です。これを記念して書籍も出版されていますので、これを含め幾つかを参考資料として示させていただきます。

参考資料

・細井裕三：「ステンレス鋼の科学と最新技術—ステンレス鋼100年の歩み—」ステンレス鋼協会（2011）
・田中良平：「ステンレス鋼の選び方・使い方」日本規格協会（2010改訂版）
・鈴木隆志：「ステンレス鋼発明史」アグネ技術センター（2000）

先輩・後輩スレーチガイカンチガイ

先輩「あそこタテカエ（立替払）してるだろう」
後輩「いや（建替）工事は始まってませんが」

先輩「先方からライカン（来勘：次月払）頼まれるんだよ」
後輩「（爆弾の雷管）そんな物頼なもの扱っちゃ駄目ですよ」

2012年3月
2. 特殊鋼の製造に関連して

（1）実務で最初に出てきますが、違いがよくわかりません？

【質問】
1. 鉄と鋼の違いは？

新日本製鐵㈱
金須賀之

英訳すると、鉄は「iron」、鋼は「steel」になりますが、日本語の「鉄」は「iron」と「steel」の両方の意味を含むことがあり、更には元素記号「Fe」の意味でも使われるので、ちょっと紛らわしいですね。

ちなみに、高炉で作られる鉄鉱（炭素を4～5％程度含有）は「pig iron」で、転炉で脱炭精錬された溶鋼は「molten steel」です。

鉄と鋼は含有される炭素量で区分されており、「炭素量が約2.1％までの鉄－炭素合金が鋼」で、「炭素量が約2.1％を超える鉄－炭素合金が鉄」になります。（炭素量がごく微量な場合は「純鉄」ですが、ここでは割愛します。）

鉄鉱は非常に純度が高く、硬くて脆く衝撃に弱いため、このままでは構造用部材として使用するには適しません。そこで鉄鉱を脱炭精錬して粘く信頼性が高い鋼を製造します。

常温の鉄や鋼は、酸化されやすいフェライトと硬い炭素化の複合体になっています。フェライトが固溶できる炭素量はわずかなので、常温の鉄や鋼の中では炭素をセメントイト（Fe,C）などの炭化物として析出しています。炭化物はフェライトと比べて著しく硬く延性が低いので、炭化物の析出量や形状が鉄や鋼の硬さや靭性などの機械的性質に大きく影響します。

このように、炭素量が鉄鋼の機械的性質を左右する重要な因子であり、JIS規格でも多くの規格名に炭素量が表示されています。（例：S45Cは炭素量0.45％の鋼）

【質問】
2. CCとICのメリットとデメリットを教えてほしい

新日本製鐵㈱
金須賀之

歴史的には、昔は全てIC（Ingots Casting、造塊法）で、CC（Continuous Casting、連続鍛造法）は1970年代以降急速に発展した技術です。

ICはコップ状の型中に溶鋼を注入後、静置・放冷して凝固した鋼塊を得るもので、凝固までの間に鋼塊の上下方向（鋼材製品の長手方向）に品質（成分、硬さなど）のばらつきが生じます。

CCは底がない型中に溶鋼を注入しながら冷却して引き抜いていく、凝固した鋼片を製造します。溶鋼は一定の速度で連続的に移動しながら冷却・凝固するので、鋼片長手方向の品質ばらつき（成分、硬さなど）は小さくなります。また、電磁揺動などの技術によって鋼材断面方向についても品質ばらつき改善が図られています。

CCの方がICよりロット内の品質ばらつきが小さく効率的な生産ができるので、現在では鋼材の殆どはCCで製造されています。
一方、ICはCCでは鍛造が困難な鋼種でも製造が可能で、高合金鋼などの小ロット材製造に適用されているケースが多いようです。

【質問】
3. リムド鋼とキルド鋼の違いは？

新日本製鐵㈱
金須賀之

リムド鋼、キルド鋼とは、溶鋼の「脱酸法」に基づく鋼の分類法です。溶鋼には酸素などのガス成分が含まれており、凝固の過程で気泡を生じま

24

特 殊 鋼 61巻 2号
す。溶鋼中の酸素は炭素と結合してCOガスの気泡になるので、溶鋼の炭素量が高ければCOガス発生量が増大してポイラリングなどの影響が出てきます。COガス発生を抑えるには、溶鋼中の酸素をあらかじめ固形の酸化物にすることが有効で、SiやALを主成分とする脱酸剤を添加します。このような溶鋼処理を「脱酸」と呼びます。

リムド鋼は、積極的な脱酸剤添加を行わずに鈍造された鋼です。未脱酸の溶鋼は凝固時にCOガスの気泡を生成し、溶鋼を流動させて凝固界面の濃縮溶鋼を洗い流します。このためリムド鋼では低炭素で清浄な外殻（リム層）が得られますが、内部に不純物が多くなります。このようにリムド鋼は鋼材の部位による品質差が生じるので、加工条件には注意が必要です。

リムド鋼は一般的なIC（Ingot Casting、造塊法）の低炭素鋼に限られていますが、これは先に述べたポイラリングの懸念があるためです。リムド鋼をCC（Continuous Casting、連続鈍造法）で鈍造する場合は、弱脱酸を施す必要があります。

キルド鋼は、凝固時のCOガス気泡発生を抑えるために脱酸処理を十分に施した鋼です。脱酸剤を添加して静かに凝固させると、鋼材の部位による品質差はリムド鋼よりも小さくなります。炭素量0.3％以上の鋼は、一般的に全てキルド鋼です。

ところで、同じ炭素量のリムド鋼とキルド鋼の硬さを比較すると、一般的にリムド鋼の方が軟らかいと言われています。この理由のひとつは、前述のようにリムド鋼の表層部（リム層）が低炭素化しているためです。その他の理由として、冷間加工を受けた後の加工硬化、時効硬化の影響が考えられます。

鍛造や鍛造などの冷間加工を受けた鋼材には転位が発生し、固溶窒素素や固溶炭素の転位に影響して転位が移動する際の抵抗として鋼材を硬化させます。リムド鋼は、凝固時に発生するCOガス中に窒素が捕捉されて抜けていくため自然と低窒素化する傾向にあり、この結果加工硬化や時効硬化の影響を受けにくいと考えられています。

ただし、現在では溶鋼と大気の断面（シール）の徹底や二次鋼鉄での脱ガス処理によってキルド鋼でも低窒素素が製造されており、脱酸方法による硬さの差異は小さくなってきているようです。

参考文献
1）丸善株式会社：レシリー鉄鋼材料学
2）財団法人日本規格協会：JISハンドブックⅠ 鉄鋼Ⅰ
3）丸善株式会社：鉄鋼製造法
4）新日本製鐵㈱：鉄と鉄鋼がわかる本

先輩・後輩スレチガイカンチガイ
先輩「テンロク（1.6mm）あたりじゃないか」
後輩「ええ、サイズを聞いているんですが」

先輩「ちゃんとエフ（絵符）書いて付けるけよ」
後輩「一文字（F）だけで判るのかな？」

2012年3月
（2）電気炉鋼と高炉（転炉）鋼

【質問】
1. 高炉鋼と転炉鋼と、何で言い方が違うの？
2. 各々の長所短所は何でしょうか？
3. スクラップで製造した丸棒と、溶鉄で製造した丸棒では、どこが違うのか？
4. 製品の品質での電炉と高炉のメリットとデメリットを教えてほしい。
5. 構造用鋼で、同じ認定工場材なのに某電炉材はNGと言われることがありますが、国内メーカーに於いて製品差は有るものですか？有るとすればどの様なものですか？

新日本製鐵㈱
棒線営業部
金原貴之

上記のご質問に対し、まとめて解説致します。
まず、高炉鋼（転炉鋼）と電気炉鋼（電炉鋼）の各々の製造工程を表1に示します。

表1に示したように、「高炉鋼」と「転炉鋼」は、同じものを表しています。
また、「電気炉鋼」と「電炉鋼」も同じですので、以降は「高炉鋼」と「電炉鋼」の名称で解説します。

高炉鋼と電炉鋼の製造工程の差異は、表1に示したように「原料素材」と「溶解・1次精錬工程」であり、2次精錬以降は基本的に同一と考えられます。後で述べるように、高炉鋼と電炉鋼では原料素材の違いに伴って不純物成分の含有量が異なりますが、2次精錬以降の工程で細かな調整を行うことにより、実用上は問題のないレベルに収めることが可能になっていると考えられます。

高炉鋼は、原料の鉄鉱石（酸化鉄）から酸素を奪うため還元材として炭素（COガス）を使用します。高炉内で酸化鉄を還元、溶融して得られた鉄鉱は、炭素を4～5％程度含有しておりこのままでは硬くて脆く衝撃に弱いため、次の工程の転炉（converter）で酸素を吹き込んで脱炭精錬し、鉄鉱から溶鋼に転換します。この時、鉄鉱に含まれていたP（硫黄）などの不純物成分は酸化されてスラグ中に分離除去されます。

電炉鋼は、スクラップ（市場から回収された鉄鋼）を主原料として電気エネルギー（アーク熱）で溶解した鋼です。原料のスクラップからは元の鋼材に含まれていた合金成分などの混入物が持ち込まれます。電気炉溶解の初期に酸化精錬で不純物成分を酸化除去しますが、Ni、Mo、Cuなどは酸化除去されにくく溶鋼中にトランプエレメントとして残存します。このような合金成分は、例えばJISのSCM435では「不純物としてCuは0.3％を超えてはならない」と規定されています。

原料のスクラップはその品位によってゲレード分けされており、製造者は製品の要求品質に従って原料の使い分けを行い、トランプエレメントの残存量を管理しています。

このような、高炉鋼と電炉鋼では成分（トランプエレメント）に微妙な差異があり焼き入れ性などへ影響を及ぼします。ただし、他の元素の添加量を工夫することで実用上の問題がないように調整されますので、使用者と鋼材メーカー間でよく相談することが肝要です。

参考文献
1）丸善株式会社：レスリーアル鋼材科学
2）財団法人日本規格協会：JISハンドブック1 鉄鋼
3）丸善株式会社：鉄鋼製造法

<table>
<thead>
<tr>
<th>表1</th>
<th>製造工程</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>名称</td>
</tr>
<tr>
<td>高炉（転炉）鋼</td>
<td>鉄鉱石、石灰</td>
</tr>
<tr>
<td>電気炉（電炉）鋼</td>
<td>スクラップ</td>
</tr>
</tbody>
</table>

26 特殊鋼 61巻 2号
（3）ミルシートの内容は？

【質問】
1. ミルシートは、誰が書いてもよいのですか？製鋼と圧延が違う場合
2. ミルシートに載っている重量は、どうやって測ったのでしょうか？
3. 納入された銅材を、或るリサーチ会社で化学成分を分析させたところ、ミルシートの表示と、やや違う値が出ました。どの程度まで許容されるのでしょうか？
4. ミルシートの成分値は、チャージ全体の成分と、一致するのでしょうか？また銅や硫黄など、ごく少量含まれる成分でも、どの部位でも均一になっているのでしょうか？

表 1 溶鋼分析値と製品分析値の許容変動値（JIS G 0321より抜粋）単位 %

<table>
<thead>
<tr>
<th>成分</th>
<th>化学成分規定値の最大値</th>
<th>許容変動値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
</tr>
<tr>
<td>C</td>
<td>0.15を超え</td>
<td>0.15以下</td>
</tr>
<tr>
<td></td>
<td>0.40を超える</td>
<td>0.40以下</td>
</tr>
<tr>
<td></td>
<td>0.80を超えるもの</td>
<td>0.80以下</td>
</tr>
<tr>
<td>Si</td>
<td>0.30を超え</td>
<td>0.30以下</td>
</tr>
<tr>
<td></td>
<td>0.60を超える</td>
<td>0.60以下</td>
</tr>
<tr>
<td>Mn</td>
<td>0.60を超え</td>
<td>1.15以下</td>
</tr>
<tr>
<td></td>
<td>1.15を超え</td>
<td>1.65以下</td>
</tr>
<tr>
<td>P</td>
<td>0.060以下</td>
<td>-</td>
</tr>
<tr>
<td>S</td>
<td>0.060以下</td>
<td>-</td>
</tr>
<tr>
<td>Cu</td>
<td>最小値規定の場合</td>
<td>0.02</td>
</tr>
</tbody>
</table>

鉄鋼メーカーが、規格が指定された銅材を受注した場合に、その製造結果が指定された規格などの要求事項を満足していることを証明した書類のことを一般的に「ミルシート」と呼びます。製造所（mill）が発行する書（sheet）という意味から、ミルシート（mill sheet）と呼びます。ミルシートは主に日本で使われる和製英語で、JISでは「検査証明書」（Inspection Certificate）という名称となっています。

検査証明書には、商社名／需要者名、契約番号、銅種名（商品名）などの検査ロットの明細と化学成分、機械的性質、導入性、寸法、長さ、質量など、お客様から指定された規格、試験実績値や測定実績値が記載されています。

検査証明書は、JIS G 0415に定められており、製造業者の製造部門から独立したオーソライズされた品質管理部門により発行され、製造部門から独立したスタッフのオーソライズされた代表によって妥当性が確認されています。また、検査証明書の署名者は品質管理部門の代表となっています。従って、製鋼と圧延の工場が違う場合でも、提供する工場の代表者により品質の妥当性が確認されて発行されます。

検査証明書に記載される化学成分は、JIS G 0404に定められており、特に規定のない限り溶鋼分析により決定し、その分析試料は、原則として1溶鋼ごとに全錬込みの間から必要量をとり分析することが規定されています。溶鋼分析の値は、同一溶鋼の平均化学成分を示すものであります。溶鋼分析値と圧延または鍛造された製品から採取して分析した製品分析値は、偏析によって異なる値を示す場合があります。そこで、銅材の製品分析方法及びその許容変動値が、JIS G 0321に定められており、表1に示す一例のように、銅材規格で指定された溶鋼分析の上限値及び下限値を超えて変動を許される許容変動値は化学成分により異なっています。例えば、銅材規格の炭素（C）の溶鋼分析の規格上限値が0.25％、銅材規格で指定された規格に従った製品分析のプラス側の許容変動値が＋0.04％の場合、製品分析の許容上限値は0.29％となります。また、溶鋼分析値がチャージの代表値として検査証明書に記載されていますが、チャージ内の許容変動値については前記した通り、許容変動値は化学成分により異なります。

検査証明書に記載される形状、寸法及び質量並びにその許容差は、JIS G 3191に定められている。
す。棒鋼とは、棒状に熱間圧延された鋼で所定の長さに切断され供給されるもので、丸鋼、角鋼、及び六角鋼があります。バーインコイルとは、棒状に熱間圧延された鋼でコイル状に巻かれて供給されるものであります。棒鋼の寸法は、径、辺又は対辺距離をmmで表し、長さをmで表します。バーンコイルの寸法は、径、辺又は対辺距離をmmで表します。棒鋼の質量は、通常、計算重量で表されています。一方、線材とバーインコイルの質量は、実測質量によると定められています。また、標準寸法、寸法や質量の許容差、棒鋼の質量の計算方法などもJIS G 3191に規定されています。
（4）加工、熱処理工程

【質問】
1. 引き抜き、ビーリング、センタレスといった加工方法がありますが、違いはなんでしょうか？それぞれの長所などを教えてください。
2. Sを添加すると、必ず切削性がよくなりますか。
3. SKD11系の熱処理の変しパターン、低温と高温・なぜなのか？
4. 冷間ダイス鋼は高温焼光しをすると、経年変化を防止するために、安定化処理を行いますが、低温焼光しは、経年変化が無いと聞いています。何故ですか？
5. 鋼材の端面（ラベル側）が使用されていないのを見かけるが、何故使用されないのでか？また端面の規格等はあるのか？

日本高周波鋼業㈱
商品開発部
殿村彰志

◇ 引抜き、ビーリング、センタレス加工

引抜きは、素材をダイスに通し、所定の寸法に引き抜く加工方法です。引抜く素材が棒の場合を引抜き、コイルの場合を導きと呼ばれることが多いです。引抜き加工は生産性が高い速い方に、寸法精度が高く、表面粗さの小さい製品が得られます。

ビーリングは、回転する切削工具により棒鋼表面を連続的に旋削する加工方法で、耐り代内のきずを除去することが可能です。その後、ローラー研削により旋削目を滑らかにする工程が併用される場合もあります。

センタレスは、2つの回転する砥石の間に棒鋼を通すことにより、表面研磨の加工方法です。中心軸を押さえずに加工することからセンタレス加工と呼ばれています。センタやチャックで支持することができない全長の長いものやパイプ、シャフトなどの仕上げに用いられます。通常、要求される表面粗さや寸法精度に応じて砥石を選定し、複数回のセンタレス加工をして仕上げます。

砥石による研磨加工のため、センタレス研磨と呼ばれることもあります。

◇ S添加による被削性向上

鋼の被削性的改善手法として、S、Pb、Se、Te、Bi、Ca、Tiなどを添加する方法があります。その中でもS添加は元素の有効性、製造コスト、被削性向上効果の大きさなどの観点から優位であり、多くの鋼種が実用化されています。Sを添加した鋼種は硫黄及び硫黄複合焼切鋼材としてJISにも制定されている鋼種があります。

被削性の良し悪しの基準として、工具寿命長さ、切り屑処理性、仕上げ面粗さ、切削抵抗の大きさなどがあります。S添加はこれらの基準において良好な結果を示し、被削性向上効果が大きい元素です。

S添加による被削性向上のメカニズムは、Sを添加することにより、鋼中にSとMnとの化合物MnS介在物が生成します。これが切削の際、応力集中元となり、切削抵抗を減らすことや、潤滑作用により被削性が良くなります。S添加量が多いほどMnS量が多くなり、被削性もより向上しますが、S添加量は多さすぎると0.4%程度までとなり、0.4%を超えてSを添加しても効果は大きくならないようです。

MnSは鍛鍊比が大きくなると長細く伸びた形状になり、繊維状のものより被削性が劣ります。そのため繊維状の介在物を得る目的で他の元素を複合添加した鋼種もあります。

また、鋼種によってはS添加による欠点が発生し、靭性や繊り値が低下します。被削性と反比例してS添加量が多いほど悪くなります。

◇ 高温焼光し、低温焼光しの使い分け

焼入れを実施した鋼は高い硬さで、極めて脆く不安定な状態であるマルテンサイト組織となっていいます。また、焼入れ時の熱収縮により、鋼材内面には高い残留応力がある状態となっています。そのため焼光しを実施し、残留応力を緩和させる

2012年3月 29
ことと、所定の硬さまで軟化させ、偏析のある安定な組織にする必要があります。焼きしには低温焼きしと高温焼きしがあり、必要とする硬さや耐性値に応じて使い分けをします。SKD11系鋼に対する低温焼きしと高温焼きしのメリット、デメリットは表1の通りです。

低温焼きしの方が、納期やコスト面で有利のため高温焼きしを指定しないと、低温焼きしを実施する熱処理業者が多いようです。SKD11では高温焼きしよりも低温焼きしの方が硬さが硬くなるため、硬さを高くしたい場合には低温焼きしを実施します。ただし、8%Cr鋼などのSKD11改良鋼では高温焼きしの方が硬さが硬くなる鋼種が多いです。

高温焼きしを実施する最大の理由は焼入れ時に残った残留応力の低減にあります。低温焼きしでは残留応力が十分に低減できないため、ワイヤーカット加工や金型使用中に割れのトラブルが発生する危険があります。したがって、形状が大きなものや複雑なものなどは高温焼きしを実施し、残留応力を十分に低減する必要があります。また、低温焼きしを実施した後に、ワイヤーカット、溶接、PVDの表面処理などを実施すると焼戻し温度より高い温度になるため、硬さや寸法が変化してしまいます。このような場合は高温焼きを実施する必要があります。

◇ 経年変化の有無

経年変化は鋼材の熱処理後に存在している残留オーステナイトが原因で発生します。残留オーステナイトは一般に常温では不安定で、マルテンサイトに変態しようとし、またマルテンサイトは炭素を過飽和したa固溶体なので、炭化物を析出し安定な状態に移行しようとする傾向をもっていま

たとえば、SKD11は一般的な焼入れ温度1030℃で焼入れを実施した場合、残留オーステナイトが20%程度あります。この残留オーステナイトは、焼きし温度が450℃程度からマルテンサイトに変態し始め、550℃程度の温度で残留オーステナイトが完全に分解し、ゼロとなります2)。特に、この温度領域で焼戻しを実施したときに存在する残留オーステナイトがマルテンサイトに変態を始める不安定な状態となっています。従って、高温焼きしを実施すると経年変化が多く発生します。高温焼きしでは不安定な残留オーステナイトを安定にするために、安定化処理を実施します。低温焼きしでは残留オーステナイトが比較的安定なため、経年変化が発生しにくくなります。高温焼きしでは残留オーステナイトが完全に分解し、ゼロになるため経年変化はほとんど発生しません。

◇ 端面の使用

定尺材から必要量に応じて鋼材を切断して使用していきますが、管理上ラベルの反対側から切断します。従って、最終的にラベルが端材として残ります。特に端面の規格があるわけではないので必要なら問題なく使用できます。

表1 焼戻し温度におけるメリットとデメリット

<table>
<thead>
<tr>
<th></th>
<th>メリット</th>
<th>デメリット</th>
</tr>
</thead>
<tbody>
<tr>
<td>低温焼きし</td>
<td>・母材の耐性が高い。</td>
<td>・残留応力が高い。</td>
</tr>
<tr>
<td></td>
<td>・硬さが高い（SKD11）。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>・経年変化量が少ない。</td>
<td></td>
</tr>
<tr>
<td>高温焼きし</td>
<td>・残留応力が低い。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>・硬さが硬い（8% Cr鋼など）</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・経年変化量が多い。</td>
</tr>
</tbody>
</table>

参考文献
1）中村守文、竹下秀男：特殊鋼35巻10号P6
2）西村隆喜：熱処理35巻5号P276（1995）
Ⅲ．特殊鋼のグローバル化

【質問】
1．特殊鋼の定義はありますか？炭素鋼は特殊鋼に含まれるのですか？

住友金属工業㈱ 棒鋼・線材カンパニー 鎌田芳彦

日本鉄鋼連盟のホームページに特殊鋼の定義について次のように説明しています。「特殊鋼とは、普通鋼（鉄と炭素の合金のうち、熱処理しないもの）に対する用語です。ニッケルやクロムなど特殊な元素を添加したり、成分を調整したので、耐熱性、耐食性に優れ、普通鋼では耐えられない厳しい環境下で使用されます。」具体的には工具鋼、構造用鋼、ばね鋼、軸受鋼、冷間鋼、ステンレス鋼を特殊鋼と定義しています。炭素鋼はその中の構造用鋼に含まれる特殊鋼です。

【質問】
2．「良質鋼」などの言葉が出てきますが、中国に特殊鋼の規格はありますか？また、JISと対応していますか？

住友金属工業㈱ 棒鋼・線材カンパニー 鎌田芳彦

日本の鋼材の分類はGB規格（中華人民共和国国家標準）に規定されますが、特殊鋼の定義は不明確です。GB/T13304-91に鋼種の分類として非合金鋼、低合金鋼、合金鋼の規定があり、成分範囲が示されています。低合金鋼と合金鋼はCr・Cu・Mo・Niの総合含量で分類されているようです。

また、それぞれ分類された鋼種には、普通品質・良品質・特殊品質の区分があります。普通鋼は、この良品質の区分を示すものと思いま

表1にGB/T13304-91に記載されている鋼種・区区分を抜粋して示します。表1には日本にない規格も多くあり、JISに対応しているとは言えません。華面の規格もありますので全てを記載できませんので、皆さんも一度GB規格を入手されて、中国語の勉強を兼ねて直接読まれることをお勧めいたします。

【質問】
3．特殊鋼ミルも海外進出するのですか？

住友金属工業㈱ 棒鋼・線材カンパニー 鎌田芳彦

日本の特殊鋼の優位性と同様に回答が難しいご質問ですが、特殊鋼の海外現地調達化が進んでいきますと、品質レベルが日本材と同一とはいえないので、すべての部品がすぐに海外材に置き換わるのは考えにくいと思います。

そこで、日本の特殊鋼メーカーは日系ユーザーの要望に応えるべく海外ミルに技術指導・技術供与や技術提携を通じて現地調達の支援をしています。

表1 中国の鋼材分類（GB/T13304-91）

<table>
<thead>
<tr>
<th>鋼材</th>
<th>普通鋼</th>
<th>一般構造用炭素鋼、ばね用炭素鋼、鉄道用一般炭素鋼など</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>良品質</td>
<td>機械構造用炭素鋼、建築構造用炭素鋼、鉄道用炭素鋼、鉄道用炭素鋼、鉄道用炭素鋼など</td>
</tr>
<tr>
<td></td>
<td>特殊鋼</td>
<td>焼入れ保証鋼、鉄道用特殊鋼、特殊ばね用鋼、特殊焼削鋼など</td>
</tr>
<tr>
<td>鋼材</td>
<td>普通鋼</td>
<td>一般構造用低合金鋼、鉄筋用低合金鋼、鉄道用一般低合金鋼など</td>
</tr>
<tr>
<td></td>
<td>良品質</td>
<td>造船用低合金鋼、自動車用低合金鋼、橋梁用低合金鋼、耐熱性低合金鋼など</td>
</tr>
<tr>
<td></td>
<td>特殊鋼</td>
<td>原子力用低合金鋼、鉄道用特殊低合金鋼、低温用低合金鋼など</td>
</tr>
<tr>
<td>鋼材</td>
<td>合金鋼</td>
<td>一般建築構造用合金鋼、鉄筋用合金鋼、鉄道用合金鋼など</td>
</tr>
<tr>
<td></td>
<td>特殊鋼</td>
<td>工具用合金鋼、ばね用合金鋼、軸受鋼、ステンレス鋼、耐熱鋼など</td>
</tr>
</tbody>
</table>

2012年3月

31
しかし、特殊鋼の海外進出は各社の経営戦略に直結るものであり、軽々とコメントできないテーマです。必要に応じて個別に特殊鋼メーカーに確認されることをお勧めします。

【質問】
4. 日本と海外の鋼材は基本的にどのくらい違うのか？できれば比較表の形で。（介在物の大きさ、表面硬さの数・深さなど）

住友金属工業㈱：鍛田芳彦

海外材を使用したい特殊鋼ユーザーの全ての方が知りたい質問と思います。しかし、日本の特殊鋼メーカーの選択を具体的に比較表の形で示すとのことではご質問に置き替えておわかりと思いますが、お答えできないのが残念です。

特殊鋼は鋼種もサイズも色々で、また国内には大小様々な特殊鋼メーカーがあり、メーカー間の品質の違いを明確に記述された資料もありません。加えて、海外材と日本材の品質の比較表を造ることはさらに難しいと思います。

【質問】
5. 日本の特殊鋼の優位性って何ですか？

住友金属工業㈱：鍛田芳彦

簡単そうで答えるのが難しいご質問です。個人的な見解を排除するために、少し引用文献を示しながらお答えしたいと思います。日本の特殊鋼メーカーの強みについては、経産省と国内特殊鋼メーカーで構成される「特殊鋼製造業の競争力強化と将米展望に関する研究会」の中で詳細に議論されています。

図1に研究会の中で用いた日本特殊鋼メーカーの製造プロセス例を示します。研究会では（1）鋼材の高性能特性、（2）品質の信頼性・再現性、（3）商品メニューと商品開発力の3つの観点から、中国をはじめとする新興国で製造される特殊

出所：経産省HP：「第2回特殊鋼製造業の競争力強化と将来展望に関する研究会」資料 平成15年12月16日
図1 特殊鋼製造に関する日本の製造プロセス例
り、日本の特殊鋼の品質優位性を支える重要なプロセスとなっています。

【質問】
7. 鍛鍊成形比が4S以上満足するのに、ビレット鍛片（海外材）だからだめと言われた。
鍛鍊成形比って何？

鍛鍊成形比とは、鍛片の断面積（S₀）を圧延製品の断面積（Sₚ）で割った値 Sₚ = (S₀ / Sₚ) で、鍛造時に生じる鍛造、収縮孔、中心偏析など機械的性質の劣化に及ぼす影響を表す指標です。機械構造用鋼のJIS規格では4S以上と規定されています。

120mm角のビレット鍛片の場合4S以上を満たすためには、直径約68mm以下の製品サイズが4S以上となります。ビレット鍛片だからダメというのではなく、JIS規格では鍛鍊成形比から製造可能な製品サイズの制約があるので、鍛片サイズ・製品サイズを考慮する必要があるということです。また、ビレット鍛片を問題にする場合は、鍛鍊成形比以外に上述の1ピート圧延を不安視する場合があります。

引用文献
1）経産省HP：特殊鋼製造業の競争力強化と将来展望に関する研究会 中間報告書 平成16年6月
2）特殊鋼55巻1号 特集/特殊鋼のグローバル展開p51 ～ p54
3）神戸製鋼技報Vol.61 (2011) No.1 p24 ～ 28
4）特殊鋼60巻2号 特集/特殊鋼の海外展開p6 ～ p22

先輩・後輩スレチガイカンチガイ
先輩「ヘゲ（熱間圧延後）はまずいよな」
後輩「（新潟名物のヘギ蒲毛）そんなことありませんよ、旨いですよ」

先輩「シェブロン（鋼材のシェブロンクラック不良）が出たらしい」
後輩「（宝石のシェブロンアメジスト）やった！億万長者になれますよ」

先輩「ナマ（SS材）のトーマル（φ10）持ってこいよ」
後輩「なんでですかそれ？」

34
鋼と比較し、日本の特殊鋼の優位性を引き出す主な要素技術とそれに対応する製造設備を表2に抽出して整理しています。

製造プロセスでは、当社は連続鍛造後分塊圧延と製品圧延の2回の圧延工程がある2ヒート圧延が主流ですが、新興国では分塊圧延工程がない1ヒート圧延2)が大半です。

分塊圧延工程では、最終のホットスカーフを施工する場合が多く、これが日本の特殊鋼の品質優位性を支えるプロセスの一端となっています。また、圧延による金属組織の微細化を図るプロセスが確実に1回少ない訳ですので、機械性能上にも差がでる場合があります。

【質問】
6. ホットスカーフって何ですか？

住友金属工業㈱
鍛鋼・線材カンパニー
鎶田芳彦

ホットスカーフとは分塊圧延工程の中で、連続鍛造製片に存在する表面欠陥（脱炭層および表面劣）を溶剤でプロセス3)です。1ヒート圧延では分塊圧延工程がないためホットスカーフ設備がなく、連続鍛造の表面の悪影響を取り除くことができません。

一方、2ヒート圧延が主流である日本ではホットスカーフは通常分塊圧延工程で施工されており、その技術に対する技術対応に主な要素技術があります。

表2 我が国の特殊鋼の優位性と優位性を引き出す要素技術等

<table>
<thead>
<tr>
<th>日本特殊鋼の優位性</th>
<th>優位性を引き出す主な要素技術等</th>
<th>異業の技術に対応する主な設備</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 特殊鋼材の高特性 (外国メーカーでは一般的でない高性能製品の製造)</td>
<td>優位性を引き出す主な要素技術等</td>
<td>異業の技術に対応する主な設備</td>
</tr>
<tr>
<td>- 成型変形抑制（含有成分を狭い幅に制御：加工・熱処理の安定）</td>
<td>- 製鋼工程における成分狭帯制御技術</td>
<td>- 鍛炉、電鉄、二次精錬、連鉄設備</td>
</tr>
<tr>
<td>- 厳重過程の微細さ（表面、内部）の抑制（微細化：機械強度、疲労寿命影響、加工性（加工性、熱処理）</td>
<td>- 高度な鍛造、冷却技術</td>
<td>- 鍛炉、電気、二次精錬、連鉄設備</td>
</tr>
<tr>
<td>- 介在物の自在制御（介在物少、高耐久強度、高摩擦力）</td>
<td>- 介在物を自在に制御する鍛造技術</td>
<td>- 鍛造技術、製造設備</td>
</tr>
<tr>
<td>- 介在物の精密活用（鍛造性能）</td>
<td>- 精密鍛造技術</td>
<td>- 精密鍛造技術、サイクルフリー圧延技術</td>
</tr>
<tr>
<td>- 結晶・組織の最適化（用途に応じた結晶程度の制御）</td>
<td>- 精密鍛造、冷却技術</td>
<td>- 制御圧延・制御冷却技術</td>
</tr>
</tbody>
</table>

2. 高い信頼性、再現性（バラツキの少ない品質特性）

- 高品質精鋼（鋼材の寸法に誤差が少ない）

- 成型変形抑制
- 厳重過程の微細さ
- 表面性

- 精密鍛造、冷却技術
- 制御圧延・制御冷却技術

3. 特殊鋼商品メニューの多様性と商品開発力

- 鍛鋼技術（鍛造技術の開発、伝承）
- Nb、V等の微量元素を駆使した成分設計

- 再利用・リサイクル制度
- 自動車メーカーと一体となった商品開発体制
- 鍛鋼協会・特殊鋼クラブ等での技術交流

出所：経産省HP：「特殊鋼製造業の競争力強化と将来展望に関する研究会」中間報告書資料 平成16年6月

2012年3月 33
IV. 営業マン“いまさら聞けない”質問集

【質問】

1. 連続鋳造：Hotプレームを冷やしてまた加熱するのはエネルギーの無駄では？

山陽特殊製鋼㈱
営業営業部 営業CS室
塚本 たけし

丸棒鋼を製造する場合、まず「製鋼→連続鋳造→分塊圧延→鋼片圧延」の連続ラインで一定寸法のビレット（半製品）を圧延します（図1）。この段階で一度冷却し、ビレットの段階での表面および内部欠陥の非破壊検査を実施します。このようにビレット段階で品質確認を行い、多種の寸法の製品に圧延いたします。その後、再度、表面および内部欠陥の非破壊検査を実施し、高度に保証された製品が出荷されます。

【質問】

2. 鍛造などで、色を見て温度を言えるのは？

日立金属㈱
特殊鋼カンパニー技術部
加田 善裕

どのような物質も、高熱を加えると、その温度によってさまざまな波長の光を放射するようになります。この波長の違いが色の差となって現れるため、色を見て温度を推定することが出来ます。鉄の場合、約600℃で赤色始め、暗桜赤色（700℃）→輝桜赤色（800℃）→明輝赤色（900℃）→黄赤色（1000℃）→輝黄赤色（1100℃）→黄白色（1200℃）→輝白色（1300℃）のように、高温になるほど、明るい色になります。伝統的な刃物製造の火造りや焼处理では、この色で温度を管理する場合が多いと言われます。

なお、この色は、材質や表面状態によっても変化し、誤差を生じるので注意が必要です。また、非接触の温度測定には放射温度計も使われますが、これは、色（波長）ではなく、赤外線や可視光線などの強度を測定して、温度を求めています。

図 丸棒鋼の製造工程
3. 倉庫に積んでいる鋼材を見て直ちに何トン位あるか、を当てる術とは。

「術の極意（複数の名人“某”より聴取）」なると“極意”は残念ながら無い。と云うことが判明。「場数」が勝負だと彼らは言い切る。丸棒やコイルや角鋼やそれら鋼管ややらが混在している場合はかなり分かりにくいらしい。角鋼だと10m立方辺りで千トン弱が目安と乾かなる名も。もとかく自社でも他社でも倉庫に入ればまずは「こりゃ何トン位かな？」と地元修士修行をすることが「名人への道」のようだ。皆さんも「今日から修行」を始めてみては如何でしょうか！

4. 線材とバーインコイルの違いは何でしょうか？

この違いを明確に答えることのできる人は業界内でも少ないと思います。かくいう私も判らないので色々と調べてみたところ、JIS G3191「熱間圧延棒鋼とバーインコイルの形状、寸法及び重量並びにその許容差」の中に、「棒状に熱間圧延された鋼でコイル状に巻かれて供給されるもの」とあります。同JISの解説によれば、線材とバーインコイルを形状で区別するのは困難だが、材質及び用途により区別する慣習です。つまり、古くは熱間圧延棒鋼であったものをコイル状にして使用するように変化した製品については、線材ではなくバーインコイルと呼ぶということです。何それ良 Kut判らないですね。

ちなみに、経済産業省の生産動向統計調査の鉄鋼月報（その4）普通鋼熱間圧延材の分類では、鉄筋コンクリート用棒鋼（SR、SD）、鉄筋コンクリート用再生棒鋼（SRR、SDR）、一般構造用圧延鋼材（SS）、リベット用丸鋼（SV）、チェーン用丸鋼（SBC）、磨棒用一般鋼材（SGD）、再生鋼材（SRB）でコイル状となった製品をバーインコイルに分類しています。

5. 線材の捲き方向を見分ける簡単な方法は？

線材の捲き方向は、線材コイルをサプライスタンドに入れて立てた状態でコイル上端側のコイル端末部を引っ張った時に、コイルがどちらに回転するかで判断します。右に回転すれば「右捲き」で、左に回転すれば「左捲き」です。

忘れた時には、左右の拳を軽く握ってコイルに見立てて下さい。小指から人差し指までがコイル胴体で、親指がコイル上端側の端末部に相当します。右手が右捲きで、左手が左捲きになるので、覚えやすいでしょう。

6. 引抜きと伸線は同じように思えますが、どう違うのでしょうか？

「伸線」と「引抜き」はともに塑性加工の一種で、鋼材の断面積よりも小さな断面積のダイスと呼ばれる孔型で通ることで塑性変形させます。その目的は同じで、①寸法精度を上げる、②表面を滑らかにする、③加工硬化によって機械的性質を改善するなどとなります。それを線材に適用する場合を「伸線」、棒鋼に適用する場合を「引抜き」と区別しています。また一般的に用いられる孔型は
丸ですが、矩形（四角）のものや六角の物も使用されています。

【質問】
7. 鋳びた鋼材は用途にも依るが、どこまで使用出来るのか？（特に熱間鍛造用途）

愛知製鋼㈱
技術企画部企画調査室
福井康二

ご質問内容についての定量的で十分な回答はできませんが、以下は、熱間鍛造での鋼材の酸化とさびの影響について考察してみます。
一般的な熱間鍛造では、通常、1000℃以上の高温にて大気雰囲気で加熱されるため、短時間で表面は酸化され、表面にはFeOを主とする酸化スケールが発生します。その酸化スケールは大変多く、鍛造型打ち時に剥離、除去されます。もともと鋼材にあったさびは、ポーラスな酸化鉄Fe₂O₃、
水酸化鉄a-FeOOHなどで、鍛造加熱時には、酸化スケールとなり、剥離・除去されます。そのため、大気加熱の熱間鍛造においては、さびの影響は無視できますが、問題点として以下の点が挙げられます。さびが増えることにより、定性的には酸化スケールが多くなり、材料歩留が悪くなります。ビット状の深いさびが存在した場合、さびの起点になる可能性があります。また、作業性の面で、材料の搬送時にさびが落下し、周辺が汚れるということがあります。

先輩・後輩スレチガイカンチガイ
先輩「ブドマリ（歩留）がイマイチなんだよね」
後輩「？？？」

先輩「かんぱん（トヨタカンパン方式）団してみようか」
後輩「（広告用看板）散髪屋じゃあるまいし変ですよ」

先輩「おいアシモト（現状）をよく見とけよ」
後輩「（じっと下を向いて）いけねえ靴を磨くのを忘れてた」

2012年3月
V. 昔の特殊鋼は良かったのですか？

【質 問】
1. 日本及び世界における、製鉄と製鋼の伝説（民間伝承）について知りたい。日本と世界の対比、製鉄と製鋼の区分が残っているか、等

日立金属㈱
特殊鋼カンパニー技術部
加田 善 裕

古代製鉄は、土または岩に穴を掘った炉で、砕いた鉄鉱石を原料に少量の還元鉱を作っていたと推察されます。その後、日本では原料として砂鉄が採用され、高さの低い箱型爐のたたら製鉄になり、17世紀中半には高殿（たたら：建屋）内の永代（常設）たたらや天秤のくごの開発により生産性を向上しながら、その技法が人や地域を限定して近代まで伝わってきました（図1）。一方、西欧では、15世紀には高炉に発展し、秘伝の要素はあったものの、ルネサンス以降は冶金学の名著も生まれ、技能から技術への転換が進みました。そして、国家的支持もあって18世紀には工業生産の域に達しました。

日本では、幕末に洋式製鉄が導入され、1901年には八幡製鉄所が発足し、生産性の高いたたら製鉄は徐々に衰退し、終戦を期に操業が途絶えることになりました。しかし、日本刀素材のニーズから、昭和日本美術刀剣保存協会が主体となり日立金属㈱の技術援助をえて、1977年に“たたら”は復活し、生存していた2名の村下（むらげ：たたらの技師長）から、現村下の木原氏、渡部氏らへの技能伝承に成功しています。

海外の古代製鉄法ではインドのウーテ鋼が有名ですが、技能伝承が途絶え、現在では製造技術が失われています。

現在の高級鋼は、1740年頃に開発されたルツボ製鋼法により、スラグ介在物のない高炭素清浄鋼の製造が可能になって始まったといえ、ルツボ鋼は19世紀になると各種元素を添加した合金鋼につながって行きました。たたら製鉄は、単一操業で“鋼”を製造しますが、その鋼塊には炭素量の異なる部分が混在しており、スラグ介在物は加熱された鋼塊から鍛造により捻り出す必要があることから、現在の製鋼とは異なる範疇と言えます。

図1 たたら製鉄法
【質問】
2. 刃物に興味があります。安来ハガネ、ダマスカス鋼は、本当にいいものですか？

日立金属㈱ 特殊鋼カンパニー技術部 加田 善裕

ここでのいう「安来ハガネ」は、日立金属安来工場で製造されている鋼の総称「ヤスキハガネ」ではなく、その中に白紙、青紙、黄紙、銀紙等の刃物鋼を指していると考えられます。

「のみ・かんな等の伝統的大工道具や包丁などの打刃物（火造りにより製造される刃物）の刃材には、白紙・青紙などが使われています。最も成分が近いのがパラツキ小さいなど安定した品質で、長年に渡り、職人の方々に厳しく評価に応じてきた信頼のブランドと言えます。

ダマスカス鋼は、かつて生産されていた本目的模様を持つ鋼素材の名称で、強靭な刀箇の素材として知られています。この鋼材の起源はインドのウーツ鋼ですが、製法がはっきり分かっておらず、現在では製造技術が失われています。また、材料としてのダマスカス鋼は貴重品のため、市中に出回ることはないと言えます。

なお、異種の鋼材を積層鍛造して、ウーツ鋼とよく似た模様を表面に浮かび上がらせた鋼を指すこともあります。包丁やナイフに用いられます（ex.ニッケルダマスカス鋼）が、ダマスカス風刃物と言ったほうが良いかもしれません。

【質問】
3. 鍛造の勉強会で「火造り・ひづくり」の言葉ができました。現在でもポピュラーに使用されている用語でしょうか？

日立金属㈱ 特殊鋼カンパニー技術部 加田 善裕

「火造り」は、「鍛造用語辞典」日本鍛造協会編には、「熱間での自由鍛造をいう。英：Smith（鍛冶屋：かじや）forging」とあります。

また、同協会等が発行する鍛造関係の書籍では、「火造り」は登場せず、用語として「自由鍛造」が使われています。ただ、市中の鍛造メーカーでは、手ハンマーや小型鍛造機を使用する熱間自由鍛造を中心に、用語「火造り」が使われる場合があります。

「火造り」が最もポピュラーに使用される分野は、日本の伝統的な打ち刃物において、鍛治職人のが腕などを打って行う熱間鍛造でしょう。日本刀の場合は、四角い棒状に伸ばした地金を刀の断面に打ち出していく工程特に「火造り」と呼ばれています。火造りは適切な温度で、適切な形状に整形することで、鋼の組織をきめ細かくし、その後の熟処理と合わせて刃物としての必要な性能を発揮させるために極めて重要な工程です。

先輩・後輩スレチガイカンチガイ
先輩「それならばイッテコイ（損得相殺）だな」
後輩「えっ何処に行くのですか？」

先輩「しょうがないエア（航空便）で持っていけ」
後輩「えっどうやって吹き飛ばすのですか」

2012年3月
2003年に「営業マンの体験した務問・珍問集」を特集し、また「同じ特集の2nd Version」を企画しました。会員販売流通業、メーカーの方々に特殊鋼販売活動現場での生のやり取りのなかで、「素朴なすれ違い事例」を集めていただき、それらを専門の方に“できるだけ詳しく回答していただく”という前回と同じ方法をとりました。あえて同じ方法をとりましたのは、現場の営業マンも年々新しい人が入って、ヒヤっとする場面にしばしば出会います。

流通に携わっている立場で特殊鋼販売技士の資格取得や、各鉄鋼メーカーで行って頂いている工場での研修などででの経験を積み重ねることにより、特殊鋼販売に役に立つ知識を身につける一層の努力は必要と存じていますが、ユーザー、鉄鋼メーカーの打ち合わせの現場では、結構難しい内容に“理解できなくても”背負うを得ない雰囲気になることが多いのも現実です。

従って、今回取り上げた質問も前回と同じものもありますが、回答者の皆様には、このような事情も理解していただき、回答していただきました。

尚、最近の環境として、電気自動車の需要動向と特殊鋼の関連や、原子力発電と放射能問題などに関連した内容などがありましたので、少ない紙面での説明が難しいので別の機会に検討することにしております。

今回の特集が、販売流通業の営業マンの特殊鋼への興味が更に深まることとともに、鉄鋼メーカーの皆様に営業現場の事情のご理解が得られ、ユーザーさんに喜んでいただく営業の質があがるということの一助になれば幸いです。
業界のうごき

浅井産業、インドネシアに現地法人

浅井産業は、6月20日にインドネシア駐在員事務所を現地法人化した。13年夏までに大型倉庫も建設し、特殊鋼用鋼を皮切りに、日系ユーザーの鋼材・非鉄金属製品の現地調達ニーズに対応する供給体制を整える。ネシア現地法人の本社は東京に、東南アジアでのビジネス展開に注力する。中長期の市場拡大を視野に先行投資として物流拠点を構築し、将来は加工分野への進出も検討する。

インドネシア事務所は11年5月に開設したばかりだが、積極果敢に現地ビジネス拡大に乗り出す。インドネシアでは内需を中心に中長期的にニッケル産業が年100万口、四輪車生産が100万台に成長する見通し。日高環境下で顧客が海外現地生産の拡大を進める中で、現地で使用する鋼材需要の取り込みを図る。

注目された活動は、ジャストタイム体制による供給体制を構築し、着工先の資金負担の軽減、スペースの有効利用に貢献している。あるも（2月16日、鉄鋼新聞）

佐久間特殊鋼、関東地区で事業強化

佐久間特殊鋼、スタンドペレット製造加工販売、特殊鋼、二次製品を手掛けるハマノ（埼玉県川口市、社長・伊藤信悟氏）の全株式を1月31日付けで取得、完全子会社化し、関東地区における事業を強化する。

同社は、茨城県土浦市に営業拠点を持つが、現在新たに茨城県結城市に用地を取得して関東支店の設立を進めている。関東での事業強化を目指す佐久間特殊鋼と、ハマノ側による事業経済の協力が合致し、完全子会社化に至った。

ハマノの営業拠点は近く完成予定の関東支店に移し、営業を開始させる projectId。新会社社長には竹内広輔佐久間特殊鋼・取締役常務執行役員が就任した。（2月3日、鉄鋼新聞）

三鋼材、相模原に4kWレーザー機新設

三鋼材は、同社最大の加工拠点、相模原加工センターにこのほど4kWレーザー加工機を1台新設した。これまでは6kWレーザー1台しかなく、薄物に対応が苦しかったが、顧客対応の幅が広がった。導入を機に広野新規開拓を進めたいとしている。総投資額は付帯設備などを合わせて約1億円。今後も切断設備の増強を検討している。

新設したレーザー加工機はアマダ製の「LC-3015FINT」シャトルテーブル付けでプレミアムクリーンカット仕様。最大加工範囲は1,500ミリ×3,050ミリ、遠送り速度は毎分120m、最大加工速度は同60m。切断板厚は3〜12ミリで、3軸レーザードライブにより最高速、高精度加工を実現した。

これまで6kWレーザー1台でなかったが、新設することで相模原加工センターの生産性も向上。即納体制をさらに強化し、新規受注に結びつけたいと考えている。（1月30日、産業新聞）

三和特殊鋼、加工機能を大幅強化

三和特殊鋼、加工機能の強化を加速する。約5,000万円を投じて、新設拠点の移転やNC旋盤の増設など機械加工部門の体制再構築したほか、本社説明センターの切削機増設や、大幅なレイアウト見直しを実施。川崎工場の新設を進め、ユーザーニーズへの迅速な対応により、工具鋼をはじめとした受注獲得につなげる。

現在進行中の中期経営計画（10〜12年度）の一環として、本年度（12月期）は加工体制の大幅な見直しに着手。11月には機械加工部門のメカテックの機能を本社倉庫内から近隣地に移転する。

本社倉庫センターでは従来第1〜第4倉庫で鋼材ごとに分かれていた切断工程を標準化し、各倉庫間の業務連携状況に応じて相応に応援できる体制を構築する。

加工機能強化を図るとともに、営業部門と配送部門の機能を分離し、在庫から配送までを効率化し、一層の短納期対応に努める。

清水金属、二相系SUS在庫販売開始

清水金属は、2月から二相系ステンレス丸棒の在庫・切断販売を本格的に開始する。第1弾としてASTM
業界のうごき

規格の海外仕（20〜200ミリ）を100
て、本社倉庫に在庫して、きめ細か
く市場ニーズを掘り起こしていく。
当面の売り上げ目標は年間5億円。

新たに本格的な在庫販売を行うニ
相系ステンレス丸棒は、オーステナイ
ト系よりも熱膨張しにくく、耐衝撃
性に優れ、塩化物環境や硫化物環境
における応力腐食割れが起きにくい
ことなどが特徴。各種圧力容器や配
管類、ローター、シャフトなど塩化
物環境における耐孔食性、耐食腐
食性、耐応力腐食割れ性と高強度が
求められる用途に適する。

今回の在庫販売開始に合わせて、
パシフィコ横浜で2月1〜3日開催
される第33回工業技術見本市（テク
ニカルショウ ヨコハマ2011）に摩振
圧接とニ相系ステンレスを出展す
る。

住金物産・韓・自動車部品メーカー
「ウボテック」に2割出資

住金物産は自動車部品の「ヘッド
レスト」を製造する韓国のウボテッ
ク社と提携し、20%出資すると発表
した。グループ傘下の新井製作所と
共同で、既にウボテックの転換製品
を引き受けており、13年に株式に転
換する。出資額は約5億円。これに
より、住金物産グループのヘッドレ
スト用パイプ部品の生産は年間730万
台分、世界シェア約10%に拡大する。

今回の出資・提携は、自動車ヘッド
レスト部品に関し、急速に進む現
地調達化に対応し、グローバルな世
業拡大を図ることが狙い。ウボテッ
ク社は、自動車用ヘッドレスト・アーミ
レスト製造会社で、安全性を重視
したヘッドレストのスライドなどの
可動式機構部品で高度な技術を有
し、韓国及ぶ欧米系自動車メーカー
に納入している。

今回の提携を機に、新井製作所が
ウボテック製品を日本市場で製造・
販売する。

大和特殊鋼、
システムバンドソー更新

大和特殊鋼は、名古屋支店（愛
知県稲沢市）のシステムバンドソーをリ
プレースし、本稼働を開始する。新
型機の導入により切断加工のスピー
ドを大幅に向上させることで、ユーザ
ーによる細系ステンレス丸棒を中心
とした小ロット多品種ニーズにき
め細かく対応、スピーディーな供給
体制を構築して受注拡大を目指す。

導入したのはマツダ製のASPC430。
新型機は鋼材のセットから機械への
搬入、払い出しを全自動で行うこと
が可能となった。これに加え、99種
類もの鋼種に対応することから、顧
客からの多様化が加わり加工ニーズに
いっぱい幅広く対応できるようになった。

同社は「400角以上の太径製品は
既存の帯鋼盤で対応し、30〜100角
といった顧客のニーズが高い細物の
生産効率を上げ、より迅速な供給体
制を構築することで受注拡大につな
げたい」としている。

名古屋特殊鋼、インドネシアに進出
金型、現地で製造・販売

名古屋特殊鋼は、冷間圧延金型
メーカー・和田山精機（本社・兵庫
県朝来市）と合弁でインドネシアに
現地法人を設立、インドネシアに進
出することを決めた。ジャカルタ東
部のKIM工業団地内の豊田通商テ
クノパーク内に工場地を確保し、8
月から現地での金型加工、各種治具
製作・販売を行う。2014年度に
年商4億円程度、19年度をめどに同
12億円規模に拡大したい考え。

近年、メーンとなる自動車関連
でアセアン地域を中心に海外部品生
産の動きが活発化。一方金型につい
ては多くの部品メーカーが日本から
調達しており、現地で鍛造、鋳造用
金型を高品質で供給できる金型メーカー
は少ないのが現状。

このため、同社では早くから東ア
シア地区での展開を検討していた。
今回、パートナーやなどでも高い
技術力を持つ和田山精機とともにイ
ンドネシアに進出することを決め
た。

白鹭特殊鋼、
グループ会社の設備増強

白鹭特殊鋼は、グローバル化する
顧客ニーズに対応するためグループ
会社の加工機能を強化する。加西ス
チールセンター（兵庫県加西市）で
は建屋を増築し、大型BTA深穴明
機2基を設置し内部加工を強化。ハ
クロマシンナリー本社では大型超硬丸
鋼切断機を1基更新し、NC旋盤を
1基増設する。

同社は07年9月に加西スチール
センターを開設。大径長尺丸棒やブ
ーム、精密鍛造丸棒など特微のあ
る品種を在庫。グループ会社のハク
ロマシンナリーは同社に加西事業所を
構え外径加工を行ってきた。加工量
の増加に伴い手狭になってきたこと
や内部加工の強化を図るため数地
の遊休地に建屋を増築し加工設備を
増設することにした。

増築した建屋の面積は約1,750m²。
既存の1基と併せBTA深穴明機は
3機となり本格稼働に入っている。

メタルワン、インドネシア
特殊鋼棒線加工を強化

メタルワン（MO）はインドネシ
アで特殊鋼棒線加工事業を強化す
る。現地合弁のアイアン・ワイア
・ワークス・インドネシア（IWII）
で4月種絨予定で伸仲機（II型）1
基、伸縮機1基を増設し、10月稼働
山一ガネン、寸法精度をミクロン単位で保証

山一ガネンは原子炉関連部品など極めて高精度、高品質の特殊鋼三次元加工品の寸法精度を1ミクロン単位で国際的に保証できる体制を構築したと、発表した。民間企業としての分野では初めて「ISO-17025」の適合試験所に認定された。これを作成、私社数年に技術開発センターを新設する計画で、世界最大級の三次元測定機、5軸加工機等導入に年内に稼働する。

寸法試験での同規格を測定、環境など個々の要因のばらつきや、それらが合成した全体のばらつき（不確実性）を計測し、その上で試験結果を保証するという厳しい技術的要求事項が求められる。

同規格の認定にともなって、今秋をめどに技術開発センター設備を建設。これにより高精度加工、精密寸法測定共にサイズを問わず幅広く対応し、素材から加工、改質、測定までを一貫して品質保証できる生産体制を構築する。

不二越、中国に新工場建設

不二越は、中国の江蘇省張家港市において、今後の中国市場の拡大を目的とした新工場を建設する。中国市場は今後も成長を続けるが、不二越はその市場拡大に向けた準備を進めていく。

大同、工具鋼流通・加工事業を統合

大同特殊鋼は、グループの工具鋼流通・加工事業を統合。大同アミスター、大同マテックスと石炭鋼鉄を統合し、材料の在庫、切削、機械加工、熱処理を一貫で行う直系の販売販売活動を強化すると発表した。石炭鋼鉄は連結対象とする会社商事との合意は、今夏の統合スタートを目指す。

国内の工具鋼、金型プレート市場の縮小傾向を踏まえつつ集約・効率化により競争力強化を図るとともに、アジア等海外生産市場に対し展開している。

業界のうごき

神鋼、中国に高級鋼製品拠点

神鋼は、中国広東省佛山市に高級鋼製品拠点を設立。事務所や販売店舗の展開を計画している。神鋼は高級鋼製品の国内市場での需要を捉え、中国市場での展開を加速している。

統合会社は、大同特殊鋼の国内工具鋼製品の約3分の1を扱い、プレート加工、熱処理加工業界も全国展開する。鍛造品など加工品の販売も引き続き行われ、統合会社と大同アミスターでの地域に重複する拠点の統合も進められると期待されている。

中国の自動車業界では、自動車および乗用車の高機能、生産ラインの高効率化・高精度化が進み、最新鋭の生産設備や要因部品に対する要求が高まっている。これに伴い自動車用油圧機器や、機械加工ラインに必要な精密工具、工作機械用油圧機器の需要が拡大している。

また、建設機械市場では、中長期的に住宅や水利など市街化のためのインフラ整備が進むと予想され、小型以下の油圧ショベルのニーズが拡大し、建設機械用の油圧機器の需要が伸びると見込まれている。

こうした需要に応えるため、中国の中核拠点を新設し、供給体制の確立と品質・コスト競争力を強化することにした。
鋼種別統計資料

特殊鋼熱間圧延鋼材の鋼種別生産の推移

<table>
<thead>
<tr>
<th>年月</th>
<th>工具鋼</th>
<th>機械構造用鋼</th>
<th>鋼材</th>
<th>特殊用鋼</th>
<th>その他</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>'09年度</td>
<td>264,305</td>
<td>5,739,973</td>
<td>2,405,351</td>
<td>4,875,384</td>
<td>1,645,123</td>
<td>3,084,123</td>
</tr>
<tr>
<td>'10年度</td>
<td>249,273</td>
<td>4,620,793</td>
<td>4,941,098</td>
<td>8,661,891</td>
<td>1,118,140</td>
<td>2,291,310</td>
</tr>
</tbody>
</table>

形状別統計資料

<table>
<thead>
<tr>
<th>年月</th>
<th>鋼材</th>
<th>椎鋼</th>
<th>管材</th>
<th>線材</th>
<th>鋼板</th>
<th>鋼帯</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>'10年度</td>
<td>395,638</td>
<td>6,029,672</td>
<td>1,358,012</td>
<td>4,382,009</td>
<td>2,074,482</td>
<td>6,270,227</td>
<td>20,505,448</td>
</tr>
<tr>
<td>'11年度</td>
<td>500,334</td>
<td>6,258,187</td>
<td>1,498,992</td>
<td>4,175,907</td>
<td>2,087,517</td>
<td>5,832,915</td>
<td>20,352,432</td>
</tr>
</tbody>
</table>

経済産業省調査統計部調べ

経済産業省調査統計部調べ

44 特殊鋼 61巻 2号
<table>
<thead>
<tr>
<th>年月</th>
<th>工具鋼</th>
<th>構造用鋼</th>
<th>構造用金鋼</th>
<th>特殊用鋼</th>
<th>用途鋼</th>
<th>その他鋼</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>10年前</td>
<td>447.725</td>
<td>3,903,202</td>
<td>4,289,768</td>
<td>8,201,911</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11年前</td>
<td>448.844</td>
<td>3,946,697</td>
<td>4,653,986</td>
<td>8,620,793</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09年度</td>
<td>321.270</td>
<td>3,015,334</td>
<td>3,922,857</td>
<td>6,948,196</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10年度</td>
<td>462.905</td>
<td>4,084,396</td>
<td>4,338,870</td>
<td>8,423,166</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11年</td>
<td>28.897</td>
<td>266,280</td>
<td>385,507</td>
<td>651,787</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5月</td>
<td>25.912</td>
<td>236,662</td>
<td>351,448</td>
<td>581,110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6月</td>
<td>33.762</td>
<td>300,332</td>
<td>380,244</td>
<td>680,576</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7月</td>
<td>33.828</td>
<td>353,756</td>
<td>392,669</td>
<td>746,425</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8月</td>
<td>36.907</td>
<td>328,183</td>
<td>412,260</td>
<td>740,443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9月</td>
<td>52.655</td>
<td>349,151</td>
<td>565,933</td>
<td>915,685</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>36.529</td>
<td>355,972</td>
<td>352,512</td>
<td>708,486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11月</td>
<td>38.231</td>
<td>372,504</td>
<td>359,938</td>
<td>732,442</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12月</td>
<td>35.445</td>
<td>345,305</td>
<td>349,292</td>
<td>694,597</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>前月比</td>
<td>92.7</td>
<td>92.7</td>
<td>97.0</td>
<td>94.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>前年同月比</td>
<td>96.0</td>
<td>107.6</td>
<td>93.4</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>年月</th>
<th>工具鋼</th>
<th>構造用鋼</th>
<th>構造用金鋼</th>
<th>特殊用鋼</th>
<th>用途鋼</th>
<th>その他鋼</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>10年前</td>
<td>8,211</td>
<td>196,285</td>
<td>116,884</td>
<td>313,169</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11年前</td>
<td>8,488</td>
<td>190,227</td>
<td>116,677</td>
<td>336,905</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09年度</td>
<td>4,885</td>
<td>150,279</td>
<td>79,694</td>
<td>237,973</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10年度</td>
<td>8,496</td>
<td>172,140</td>
<td>103,840</td>
<td>275,980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11年</td>
<td>9,383</td>
<td>199,610</td>
<td>121,720</td>
<td>321,330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5月</td>
<td>7,376</td>
<td>185,884</td>
<td>127,478</td>
<td>313,362</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6月</td>
<td>8,778</td>
<td>172,482</td>
<td>113,860</td>
<td>286,342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7月</td>
<td>8,824</td>
<td>170,723</td>
<td>124,705</td>
<td>295,428</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8月</td>
<td>9,257</td>
<td>178,275</td>
<td>123,853</td>
<td>302,128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9月</td>
<td>8,411</td>
<td>190,445</td>
<td>112,533</td>
<td>293,978</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>8,614</td>
<td>189,750</td>
<td>116,580</td>
<td>306,330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11月</td>
<td>7,989</td>
<td>181,260</td>
<td>122,728</td>
<td>323,098</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12月</td>
<td>8,488</td>
<td>190,227</td>
<td>116,969</td>
<td>307,196</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>前月比</td>
<td>106.2</td>
<td>104.9</td>
<td>95.3</td>
<td>101.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>前年同月比</td>
<td>103.4</td>
<td>96.9</td>
<td>100.1</td>
<td>98.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>年月</th>
<th>工具鋼</th>
<th>構造用鋼</th>
<th>構造用金鋼</th>
<th>特殊用鋼</th>
<th>用途鋼</th>
<th>その他鋼</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>10年前</td>
<td>58,676</td>
<td>233,945</td>
<td>154,142</td>
<td>387,187</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11年前</td>
<td>59,145</td>
<td>253,243</td>
<td>174,301</td>
<td>427,447</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09年度</td>
<td>37,814</td>
<td>181,341</td>
<td>117,346</td>
<td>298,696</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10年度</td>
<td>56,255</td>
<td>257,867</td>
<td>161,527</td>
<td>418,614</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11年</td>
<td>66,956</td>
<td>255,147</td>
<td>157,809</td>
<td>443,954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5月</td>
<td>61,661</td>
<td>261,239</td>
<td>163,854</td>
<td>445,553</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6月</td>
<td>61,785</td>
<td>261,138</td>
<td>163,101</td>
<td>445,021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7月</td>
<td>59,181</td>
<td>244,231</td>
<td>159,136</td>
<td>403,627</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8月</td>
<td>61,287</td>
<td>242,145</td>
<td>169,812</td>
<td>453,242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9月</td>
<td>59,878</td>
<td>236,720</td>
<td>138,624</td>
<td>375,344</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>56,070</td>
<td>226,366</td>
<td>156,531</td>
<td>332,967</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11月</td>
<td>58,466</td>
<td>238,577</td>
<td>163,561</td>
<td>462,505</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12月</td>
<td>59,145</td>
<td>253,243</td>
<td>174,301</td>
<td>427,447</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>前月比</td>
<td>101.2</td>
<td>106.1</td>
<td>106.6</td>
<td>106.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>前年同月比</td>
<td>100.8</td>
<td>106.7</td>
<td>113.1</td>
<td>110.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

経済産業省調査統計部調べ
特殊鋼熱間圧延鋼材の輸出入推移

<table>
<thead>
<tr>
<th>年月</th>
<th>工具鋼</th>
<th>構造用鋼</th>
<th>特殊用途鋼</th>
<th>その他の鋼</th>
<th>特殊鋼材合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>10年</td>
<td>29,076</td>
<td>526,073</td>
<td>515,148</td>
<td>1,941,222</td>
<td>1,787,630</td>
</tr>
<tr>
<td>11年</td>
<td>34,103</td>
<td>426,048</td>
<td>540,217</td>
<td>964,625</td>
<td>1,833,369</td>
</tr>
<tr>
<td>09年</td>
<td>15,360</td>
<td>370,560</td>
<td>330,811</td>
<td>701,371</td>
<td>128,111</td>
</tr>
<tr>
<td>10年</td>
<td>32,088</td>
<td>518,301</td>
<td>537,548</td>
<td>1,055,849</td>
<td>186,530</td>
</tr>
<tr>
<td>11年</td>
<td>2,040</td>
<td>35,348</td>
<td>82,408</td>
<td>93,284</td>
<td>100,828</td>
</tr>
<tr>
<td>5月</td>
<td>2,725</td>
<td>36,951</td>
<td>44,273</td>
<td>82,674</td>
<td>13,823</td>
</tr>
<tr>
<td>6月</td>
<td>3,969</td>
<td>29,463</td>
<td>47,760</td>
<td>76,106</td>
<td>13,727</td>
</tr>
<tr>
<td>7月</td>
<td>3,909</td>
<td>27,612</td>
<td>48,012</td>
<td>96,884</td>
<td>93,808</td>
</tr>
<tr>
<td>8月</td>
<td>2,560</td>
<td>24,242</td>
<td>49,924</td>
<td>80,166</td>
<td>11,590</td>
</tr>
<tr>
<td>9月</td>
<td>2,043</td>
<td>30,001</td>
<td>48,353</td>
<td>86,564</td>
<td>15,900</td>
</tr>
<tr>
<td>10月</td>
<td>2,083</td>
<td>23,300</td>
<td>39,305</td>
<td>72,905</td>
<td>14,135</td>
</tr>
<tr>
<td>11月</td>
<td>1,270</td>
<td>23,472</td>
<td>47,225</td>
<td>78,686</td>
<td>10,629</td>
</tr>
<tr>
<td>12月</td>
<td>95,6</td>
<td>1,473</td>
<td>47,225</td>
<td>67,789</td>
<td>9,723</td>
</tr>
<tr>
<td>前月比</td>
<td>93,7</td>
<td>120,2</td>
<td>107,9</td>
<td>89,3</td>
<td>89,1</td>
</tr>
<tr>
<td>前年同月比</td>
<td>104,5</td>
<td>74,8</td>
<td>109,4</td>
<td>92,3</td>
<td>89,1</td>
</tr>
</tbody>
</table>

輸入

<table>
<thead>
<tr>
<th>年月</th>
<th>工具鋼</th>
<th>構造用鋼</th>
<th>ステンレス鋼</th>
<th>鋼板鋼</th>
<th>鋼材</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>10年</td>
<td>4,549</td>
<td>1,084</td>
<td>975</td>
<td>10,871</td>
<td>9,624</td>
<td>137,703</td>
</tr>
<tr>
<td>11年</td>
<td>5,771</td>
<td>881</td>
<td>166</td>
<td>11,941</td>
<td>9,319</td>
<td>156,308</td>
</tr>
<tr>
<td>09年</td>
<td>2,614</td>
<td>730</td>
<td>599</td>
<td>9,553</td>
<td>9,211</td>
<td>108,689</td>
</tr>
<tr>
<td>10年</td>
<td>5,139</td>
<td>1,157</td>
<td>866</td>
<td>11,316</td>
<td>9,308</td>
<td>142,188</td>
</tr>
<tr>
<td>11年</td>
<td>351</td>
<td>91</td>
<td>92</td>
<td>1,080</td>
<td>711</td>
<td>14,941</td>
</tr>
<tr>
<td>5月</td>
<td>318</td>
<td>70</td>
<td>43</td>
<td>1,215</td>
<td>939</td>
<td>13,290</td>
</tr>
<tr>
<td>6月</td>
<td>432</td>
<td>90</td>
<td>32</td>
<td>988</td>
<td>788</td>
<td>15,493</td>
</tr>
<tr>
<td>7月</td>
<td>234</td>
<td>77</td>
<td>71</td>
<td>674</td>
<td>1,165</td>
<td>11,267</td>
</tr>
<tr>
<td>8月</td>
<td>475</td>
<td>112</td>
<td>26</td>
<td>788</td>
<td>977</td>
<td>14,415</td>
</tr>
<tr>
<td>9月</td>
<td>244</td>
<td>37</td>
<td>64</td>
<td>822</td>
<td>709</td>
<td>14,011</td>
</tr>
<tr>
<td>10月</td>
<td>654</td>
<td>75</td>
<td>50</td>
<td>1,054</td>
<td>689</td>
<td>12,912</td>
</tr>
<tr>
<td>11月</td>
<td>714</td>
<td>17</td>
<td>36</td>
<td>1,274</td>
<td>1,012</td>
<td>11,627</td>
</tr>
<tr>
<td>12月</td>
<td>694</td>
<td>39</td>
<td>88</td>
<td>1,010</td>
<td>677</td>
<td>14,258</td>
</tr>
<tr>
<td>前月比</td>
<td>107,2</td>
<td>228,5</td>
<td>246,6</td>
<td>84,4</td>
<td>77,7</td>
<td>209,6</td>
</tr>
<tr>
<td>前年同月比</td>
<td>110,2</td>
<td>36,3</td>
<td>133,6</td>
<td>83,7</td>
<td>98,0</td>
<td>218,9</td>
</tr>
</tbody>
</table>

関連産業指標推移

<table>
<thead>
<tr>
<th>年月</th>
<th>四輪自動車生産</th>
<th>四輪完成車輸出</th>
<th>新車登録</th>
<th>建設機械生産</th>
<th>産業車両生産</th>
<th>機械</th>
<th>受注額</th>
<th>産業機械</th>
<th>受注額</th>
<th>工作機械</th>
<th>受注額</th>
</tr>
</thead>
<tbody>
<tr>
<td>10年</td>
<td>9,628,920</td>
<td>1,299,224</td>
<td>4,841,400</td>
<td>490,132</td>
<td>4,956,139</td>
<td>731,094</td>
<td>814,789</td>
<td>104,767</td>
<td>9,728</td>
<td>82,555</td>
<td>47,731</td>
</tr>
<tr>
<td>11年</td>
<td>8,398,608</td>
<td>1,136,920</td>
<td>4,466,418</td>
<td>427,765</td>
<td>4,210,220</td>
<td>674,780</td>
<td>857,360</td>
<td>114,779</td>
<td>10,566</td>
<td>85,961</td>
<td>52,666</td>
</tr>
<tr>
<td>09年</td>
<td>8,993,897</td>
<td>1,146,862</td>
<td>4,806,858</td>
<td>437,598</td>
<td>4,601,135</td>
<td>709,410</td>
<td>948,539</td>
<td>119,978</td>
<td>10,666</td>
<td>84,880</td>
<td>47,463</td>
</tr>
<tr>
<td>10年</td>
<td>9,204,348</td>
<td>1,226,079</td>
<td>4,246,528</td>
<td>425,469</td>
<td>4,277,888</td>
<td>689,370</td>
<td>805,607</td>
<td>112,847</td>
<td>10,566</td>
<td>82,209</td>
<td>52,666</td>
</tr>
<tr>
<td>11年</td>
<td>8,852,962</td>
<td>1,185,982</td>
<td>4,648,391</td>
<td>422,416</td>
<td>4,529,398</td>
<td>690,777</td>
<td>783,296</td>
<td>110,897</td>
<td>10,566</td>
<td>81,060</td>
<td>52,666</td>
</tr>
<tr>
<td>12年</td>
<td>9,094,253</td>
<td>1,132,435</td>
<td>4,245,320</td>
<td>421,469</td>
<td>4,299,788</td>
<td>686,370</td>
<td>795,607</td>
<td>110,897</td>
<td>10,566</td>
<td>82,209</td>
<td>52,666</td>
</tr>
<tr>
<td>前月比</td>
<td>92,7</td>
<td>92,7</td>
<td>103,3</td>
<td>95,5</td>
<td>88,2</td>
<td>82,4</td>
<td>87,7</td>
<td>91,5</td>
<td>96,3</td>
<td>92,9</td>
<td>161,7</td>
</tr>
</tbody>
</table>

出所
日本自動車工業会、経済産業省、総務省、産業機械工業会、工業会
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>トメ</td>
<td>生産高</td>
<td>18,713</td>
<td>100.1</td>
<td>79.1</td>
<td>34.2</td>
<td>91.3</td>
<td>29,286</td>
</tr>
<tr>
<td></td>
<td>輸出</td>
<td>2,639</td>
<td>99.6</td>
<td>104.5</td>
<td>73.7</td>
<td>87.3</td>
<td>10,368</td>
</tr>
<tr>
<td></td>
<td>販売高</td>
<td>38,144</td>
<td>93.6</td>
<td>93.7</td>
<td>175.7</td>
<td>11.9</td>
<td>51,246</td>
</tr>
<tr>
<td></td>
<td>消費者向け</td>
<td>38,064</td>
<td>93.7</td>
<td>94.7</td>
<td>176.0</td>
<td>11.9</td>
<td>52,655</td>
</tr>
<tr>
<td></td>
<td>在庫高</td>
<td>29,543</td>
<td>93.7</td>
<td>92.1</td>
<td>211.5</td>
<td>11.1</td>
<td>22,526</td>
</tr>
<tr>
<td></td>
<td>生産者工場在庫高</td>
<td>30,196</td>
<td>101.1</td>
<td>103.4</td>
<td>75.9</td>
<td>91.0</td>
<td>17,876</td>
</tr>
<tr>
<td></td>
<td>その他在庫高</td>
<td>67,633</td>
<td>101.1</td>
<td>104.1</td>
<td>74.3</td>
<td>10.4</td>
<td>28,139</td>
</tr>
<tr>
<td>トメ</td>
<td>生産高</td>
<td>772,771</td>
<td>97.0</td>
<td>104.0</td>
<td>142.3</td>
<td>9.0</td>
<td>837,049</td>
</tr>
<tr>
<td></td>
<td>輸出</td>
<td>78,698</td>
<td>107.9</td>
<td>92.3</td>
<td>464.9</td>
<td>10.6</td>
<td>92,070</td>
</tr>
<tr>
<td></td>
<td>販売高</td>
<td>728,063</td>
<td>95.8</td>
<td>100.4</td>
<td>218.0</td>
<td>8.0</td>
<td>1,157,300</td>
</tr>
<tr>
<td></td>
<td>消費者向け</td>
<td>694,597</td>
<td>94.8</td>
<td>96.0</td>
<td>211.8</td>
<td>8.0</td>
<td>1,134,981</td>
</tr>
<tr>
<td></td>
<td>在庫高</td>
<td>420,353</td>
<td>96.1</td>
<td>108.9</td>
<td>196.7</td>
<td>8.0</td>
<td>670,656</td>
</tr>
<tr>
<td></td>
<td>生産者工場在庫高</td>
<td>427,544</td>
<td>106.3</td>
<td>110.4</td>
<td>177.9</td>
<td>11.2</td>
<td>424,544</td>
</tr>
<tr>
<td></td>
<td>その他在庫高</td>
<td>307,196</td>
<td>101.1</td>
<td>98.1</td>
<td>102.6</td>
<td>97.1</td>
<td>320,394</td>
</tr>
<tr>
<td>トメ</td>
<td>生産高</td>
<td>734,740</td>
<td>104.1</td>
<td>104.9</td>
<td>136.1</td>
<td>11.5</td>
<td>738,396</td>
</tr>
<tr>
<td></td>
<td>輸出</td>
<td>42,855</td>
<td>114.5</td>
<td>108.4</td>
<td>100.7</td>
<td>89.3</td>
<td>66,673</td>
</tr>
<tr>
<td></td>
<td>販売高</td>
<td>12,629</td>
<td>99.5</td>
<td>74.2</td>
<td>59.9</td>
<td>8.6</td>
<td>27,320</td>
</tr>
<tr>
<td></td>
<td>消費者向け</td>
<td>23,629</td>
<td>108.4</td>
<td>111.6</td>
<td>171.8</td>
<td>11.9</td>
<td>33,943</td>
</tr>
<tr>
<td></td>
<td>在庫高</td>
<td>24,479</td>
<td>100.8</td>
<td>107.5</td>
<td>163.4</td>
<td>11.9</td>
<td>33,727</td>
</tr>
<tr>
<td></td>
<td>生産者工場在庫高</td>
<td>7,518</td>
<td>92.0</td>
<td>105.9</td>
<td>60.6</td>
<td>90.10</td>
<td>23,876</td>
</tr>
<tr>
<td></td>
<td>その他在庫高</td>
<td>21,518</td>
<td>105.6</td>
<td>104.5</td>
<td>677.1</td>
<td>11.9</td>
<td>22,442</td>
</tr>
<tr>
<td>トメ</td>
<td>生産高</td>
<td>296,227</td>
<td>101.7</td>
<td>112.7</td>
<td>114.9</td>
<td>0.10</td>
<td>350,013</td>
</tr>
<tr>
<td></td>
<td>輸出</td>
<td>63,641</td>
<td>97.6</td>
<td>86.1</td>
<td>71.9</td>
<td>88.3</td>
<td>116,819</td>
</tr>
<tr>
<td></td>
<td>販売高</td>
<td>257,757</td>
<td>101.6</td>
<td>90.1</td>
<td>171.6</td>
<td>0.65</td>
<td>887,740</td>
</tr>
<tr>
<td></td>
<td>消費者向け</td>
<td>247,766</td>
<td>98.3</td>
<td>86.9</td>
<td>165.9</td>
<td>0.65</td>
<td>887,941</td>
</tr>
<tr>
<td></td>
<td>在庫高</td>
<td>59,200</td>
<td>96.7</td>
<td>92.9</td>
<td>104.0</td>
<td>0.61</td>
<td>292,191</td>
</tr>
<tr>
<td></td>
<td>生産者工場在庫高</td>
<td>173,543</td>
<td>106.5</td>
<td>121.0</td>
<td>157.0</td>
<td>11.2</td>
<td>173,543</td>
</tr>
<tr>
<td></td>
<td>その他在庫高</td>
<td>122,684</td>
<td>96.1</td>
<td>103.2</td>
<td>83.3</td>
<td>02.4</td>
<td>188,988</td>
</tr>
<tr>
<td>トメ</td>
<td>生産高</td>
<td>296,227</td>
<td>101.7</td>
<td>112.7</td>
<td>114.9</td>
<td>0.10</td>
<td>350,013</td>
</tr>
<tr>
<td></td>
<td>輸出</td>
<td>63,641</td>
<td>97.6</td>
<td>86.1</td>
<td>71.9</td>
<td>88.3</td>
<td>116,819</td>
</tr>
<tr>
<td></td>
<td>販売高</td>
<td>257,757</td>
<td>101.6</td>
<td>90.1</td>
<td>171.6</td>
<td>0.65</td>
<td>887,740</td>
</tr>
<tr>
<td></td>
<td>消費者向け</td>
<td>247,766</td>
<td>98.3</td>
<td>86.9</td>
<td>165.9</td>
<td>0.65</td>
<td>887,941</td>
</tr>
<tr>
<td></td>
<td>在庫高</td>
<td>59,200</td>
<td>96.7</td>
<td>92.9</td>
<td>104.0</td>
<td>0.61</td>
<td>292,191</td>
</tr>
<tr>
<td></td>
<td>生産者工場在庫高</td>
<td>173,543</td>
<td>106.5</td>
<td>121.0</td>
<td>157.0</td>
<td>11.2</td>
<td>173,543</td>
</tr>
<tr>
<td></td>
<td>その他在庫高</td>
<td>122,684</td>
<td>96.1</td>
<td>103.2</td>
<td>83.3</td>
<td>02.4</td>
<td>188,988</td>
</tr>
</tbody>
</table>

注：1. 総在庫高とは販売者在庫高に生産者工場在庫高を加算したもの。生産工場在庫高は熱延鋼材のみで、冷延鋼材及び鋼管を含まない。また、工場以外の在庫高のあるものは、生産者所有品であってもこれ含まない。
2. 1987〜2001年のピーク時とボトム時は、最近の景気循環期間内での景気動揺の大きさの指標を示す。
3. 「その他」のピーク時、ボトム時は掲載せず。

2012年3月
平成24年新年賀詞交換会（1月5日）
場所：東京・ホテルニューオータニ
参加者：約800名

編集委員会
・小委員会（1月24日）
 5月号特集「熱処理設備の最近の動向」（仮題）の編集内容の検討
・本委員会（1月31日）
 5月号特集「熱処理設備の最近の動向」（仮題）の編集方針、内容の確認

流通委員会
・説明会（12月27日）
 「平成23年度第4・四半期の特殊鋼需要見通し」
 講師：経済産業省製造産業局鉄鋼課課長
 補佐：田久保 憲彦

参加者：45名
・工具鋼分科会（2月16日）

市場開拓調査委員会
・講演会（2月7日）
 演題：「製鋼原料の需給動向」
 講師：三井物産メタルズ㈱ 石油コークス・合金鉄本部
 合金鉄部長 白石 雅巳

参加者：40名

人材確保育成委員会
「平成23年度ビジネスマネクトップ研修講座」（2月20日、21日）
テーマ：「パワフルチーム建設&部下・後輩育成法セミナー」
講師：新日鉄技術情報センター 講師
三好 良子氏
参加者：42名

【大阪支部】
平成24年新年賀詞交換会（3団体共催 1月5日）
場所：リーガロイヤルホテル
参加者：753名

【名古屋支部】
平成24年新年賀詞交換会（3団体共催 1月6日）
場所：名古屋観光ホテル
参加者：421名

部会
・工具鋼部会（1月26日）
・企画部会（1月27日）
・ステンレス鋼部会（2月3日）
・構造用部会（2月9日）
3団体共催技術講演会（2月10日）
演題：「日新製鋼のDNA-SUSと開発事例」
講師：日新製鋼㈱名古屋支社 商品開発部
ステンレス・薄板チーム
チームリーダー 蛙子 貴幸氏
出席者：80名
会員数

製造業者	27社
販売業者	108社
合 計	135社

賛助会員

0社

製造業者会員

<table>
<thead>
<tr>
<th>社名</th>
<th>会社名</th>
</tr>
</thead>
<tbody>
<tr>
<td>愛鋼</td>
<td>綾部</td>
</tr>
<tr>
<td>青山特殊鋼</td>
<td>住金物産</td>
</tr>
<tr>
<td>浅井産業</td>
<td>住金物産特殊鋼</td>
</tr>
<tr>
<td>東金属</td>
<td>住商特殊鋼</td>
</tr>
<tr>
<td>新井ガネ</td>
<td>住友商事</td>
</tr>
<tr>
<td>栃井鋼商</td>
<td>大同興業</td>
</tr>
<tr>
<td>石原鋼</td>
<td>大同マテックス</td>
</tr>
<tr>
<td>伊藤忠丸紅鉄</td>
<td>大洋商事</td>
</tr>
<tr>
<td>伊藤忠丸紅特殊鋼</td>
<td>大和興業</td>
</tr>
<tr>
<td>井上特殊鋼</td>
<td>大和特殊鋼</td>
</tr>
<tr>
<td>植田興業</td>
<td>竹内ガネ商行</td>
</tr>
<tr>
<td>錦井钢管</td>
<td>孟鋼鉄</td>
</tr>
<tr>
<td>ウメトク</td>
<td>田島スチール</td>
</tr>
<tr>
<td>岡谷鋼機</td>
<td>辰巳屋興業</td>
</tr>
<tr>
<td>兼松</td>
<td>中部ステンレス</td>
</tr>
<tr>
<td>長町</td>
<td>千曲鋼材</td>
</tr>
<tr>
<td>カムス</td>
<td>テクノタジマ</td>
</tr>
<tr>
<td>かわいスチール</td>
<td>鐵鋼社</td>
</tr>
<tr>
<td>川本鋼材</td>
<td>デルタスティール</td>
</tr>
<tr>
<td>北島鋼材</td>
<td>東京貿易金属</td>
</tr>
<tr>
<td>クマガイ特殊鋼</td>
<td>東信鋼材</td>
</tr>
<tr>
<td>ケー・アンド・アイ特殊管販売</td>
<td>特殊鋼機</td>
</tr>
<tr>
<td>小山鋼材</td>
<td>三和通商</td>
</tr>
<tr>
<td>佐久間特殊鋼</td>
<td>中川特殊鋼</td>
</tr>
<tr>
<td>擎井鋼</td>
<td>中野ガネ</td>
</tr>
<tr>
<td>佐藤商事</td>
<td>永田鋼材</td>
</tr>
<tr>
<td>サハシ特殊鋼</td>
<td>名古屋特殊鋼</td>
</tr>
<tr>
<td>三協鋼</td>
<td>ナス鋼材</td>
</tr>
<tr>
<td>三京物産</td>
<td>南海鋼材</td>
</tr>
<tr>
<td>三興鋼材</td>
<td>日輪鋼材</td>
</tr>
<tr>
<td>三和特殊鋼</td>
<td>日金スチール</td>
</tr>
<tr>
<td>JFE商事</td>
<td>日鉄商事</td>
</tr>
<tr>
<td>芝本産業</td>
<td>日本金型材</td>
</tr>
<tr>
<td>清水金属</td>
<td>ノボル鋼材</td>
</tr>
<tr>
<td>清水鋼</td>
<td>野村鋼機</td>
</tr>
<tr>
<td>高村</td>
<td>白鯨特殊鋼</td>
</tr>
<tr>
<td>橋本鋼</td>
<td>橋本鋼</td>
</tr>
<tr>
<td>長谷川ガネ</td>
<td>長谷川ガネ</td>
</tr>
</tbody>
</table>

販売業者会員

<table>
<thead>
<tr>
<th>社名</th>
<th>会社名</th>
</tr>
</thead>
<tbody>
<tr>
<td>林田特殊鋼材</td>
<td>阪神特殊鋼</td>
</tr>
<tr>
<td>丸和興業</td>
<td>阪和興業</td>
</tr>
<tr>
<td>日立金属アドメット</td>
<td>日立金属</td>
</tr>
<tr>
<td>日立工具鋼</td>
<td>日立ハイテクノロジーズ</td>
</tr>
<tr>
<td>平井</td>
<td>平井</td>
</tr>
<tr>
<td>フクトオカ</td>
<td>フクトオカ</td>
</tr>
<tr>
<td>藤田商事</td>
<td>藤田商事</td>
</tr>
<tr>
<td>古池鋼業</td>
<td>古池鋼業</td>
</tr>
<tr>
<td>ブルータス</td>
<td>ブルータス</td>
</tr>
<tr>
<td>堂田ガネ</td>
<td>堂田ガネ</td>
</tr>
<tr>
<td>マックスコーポレーション</td>
<td>マックスコーポレーション</td>
</tr>
<tr>
<td>松井鋼材</td>
<td>松井鋼材</td>
</tr>
<tr>
<td>三沢興産</td>
<td>三沢興産</td>
</tr>
<tr>
<td>三井物産</td>
<td>三井物産</td>
</tr>
<tr>
<td>三井物産スチール</td>
<td>三井物産スチール</td>
</tr>
<tr>
<td>三菱商事ユニメタルズ</td>
<td>三菱商事ユニメタルズ</td>
</tr>
<tr>
<td>メタルワン</td>
<td>メタルワン</td>
</tr>
<tr>
<td>メタルワンスチール</td>
<td>メタルワンスチール</td>
</tr>
<tr>
<td>森平鋼業</td>
<td>森平鋼業</td>
</tr>
<tr>
<td>山一ガネ</td>
<td>山一ガネ</td>
</tr>
<tr>
<td>山進産業</td>
<td>山進産業</td>
</tr>
<tr>
<td>やまト特殊鋼</td>
<td>やまト特殊鋼</td>
</tr>
<tr>
<td>山野鋼材</td>
<td>山野鋼材</td>
</tr>
<tr>
<td>陽鋼物産</td>
<td>陽鋼物産</td>
</tr>
<tr>
<td>鏡光特殊鋼</td>
<td>鏡光特殊鋼</td>
</tr>
<tr>
<td>リンタツ</td>
<td>リンタツ</td>
</tr>
<tr>
<td>滝辺ガネ</td>
<td>滝辺ガネ</td>
</tr>
</tbody>
</table>

2012年3月
特集／熱処理を支える設備の進歩

I．総論

II．熱処理設備の実際

III．熱処理設備を支える要素技術

IV．会員メーカーの熱処理・素材技術

7月号特集予定…自動車のHV、EV化に対する特殊鋼の応用

特殊鋼

第61巻 第2号
©2012年3月
平成24年2月25日 印刷
平成24年3月1日 発行

定価1,200円 送料100円
1年 内国7,200円（送料含）
外国7,860円（空、船便）